Application of Artificial Neural Networks in Predicting Salt Imports by Country of Origin Using the Back-propagation Method
DOI:
https://doi.org/10.55123/jomlai.v1i3.919Kata Kunci:
Prediction, Import, Salt, Back-propagation, Country of OriginAbstrak
Salt is a basic consumption material needed by the community and various industries. Indonesia is a country that has many beaches that have great potential as a source of salt production. But Indonesia is still dependent on imports so that industrial imports continue to increase, can directly or indirectly affect the risk of the country’s economic pattern. An increase in salt imports although there was also a decrease but only slightly and did not last long from several countries from 2010-2020 recorded in the Central Statistics Agency (BPS). In this study, the author will predict the import of salt for the next 3 years using the Back-propagation algorithm. Back-propagation is one of the artificial neural network methods that is quite reliable in solving problems where the network tries to achieve stability again to achieve the expected output and there is a learning process by adjusting connection weights. This study uses 6 architectural models : 5-80-1, 5-90-1, 5-100-1, 5-110-1, from the four models the best architectural model is obtained namely 5-90-1 with an accuracy value of 75%, epoch 4265 iterations, and MSE Testing 0,01569.
Referensi
O. T. R. Putri and T. Sugiarti, “Perkembangan dan Faktor yang Mempengaruhi Permintaan Volume Impor Garam di Indonesia,” Jurnal Ekonomi Pertanian dan Agribisnis (JEPA), vol. 5, no. 3, pp. 748–761, 2021.
R. Wulansarie, I. N. Pradnya, M. Kusumaningrum, I. Pratiwi, Y. A. Prabowo, and F. Amrulloh, “Jurnal dedikasi,” vol. 2, no. 1, pp. 64–72, 2021.
A. Hakim and A. Triyanti, “Model Empiris Impor Garam Indonesia Empirical Model of Indonesian Salt Imports,” vol. 11, no. 2, pp. 125–135, 2020.
T. Kurniawan and A. Azizi, “Dampak Kebijakan Impor Dan Kelembagaan Terhadap Kinerja Industri Garam Nasional,” Jurnal Kebijakan Sosial Ekonomi Kelautan dan Perikanan, vol. 3, no. 1, pp. 1–13, 2013.
I. S. Purba and A. Wanto, “Prediksi Jumlah Nilai Impor Sumatera Utara Menurut Negara Asal Menggunakan Algoritma Backpropagation,” Techno.Com, vol. 17, no. 3, 2018.
A. Triyono, A. J. Santoso, and Pranowo, “Penerapan Metode Jaringan Syaraf Tiruan Backpropagation Untuk Meramalkan Harga Saham (IHSG),” Jurnal Sistem Dan Informatika, vol. 11, no. 1, pp. 165–172, 2016.
A. S. Jamil, N. Tinaprilla, and Suharno, “IMPOR GARAM INDONESIA Determinant Factors of the Demand and Effectiveness of Indonesia ’ s Salt Import Policy PENDAHULUAN Garam komoditi sebagai salah satu ini lahan produksi di Madura tersebut menguasai lahan garam sekitar 5 . 130 2014 mencapai 330 . 000,” vol. 11, no. 1, pp. 43–68, 2017.
E. A. Saputri, “Prediksi Volume Impor Beras Nasional Menggunakan Jaringan Saraf Tiruan Metode ELM ( Extreme Learning Machine ),” vol. Im.
M. Y. Habibi and dan E. Riksakomara, “Peramalan Harga Garam Konsumsi Menggunakan Artificial Neural Network Feedforward-Backpropagation ( Studi Kasus :,” vol. 6, no. 2, 2017.
Y. R. Sari and M. Rani, “Penerapan Logika Fuzzy Metode Mamdani Dalam Menyelesaikan Masalah Produksi Garam Nasional 1,2,” vol. 8, no. 1, 2021.
Nurhayati, M. B. Sibuea, D. Kusbiantoro, M. Silaban, and A. Wanto, “Implementasi Algoritma Resilient untuk Prediksi Potensi Produksi Bawang Merah di Indonesia,” Building of Informatics, Technology and Science (BITS), vol. 4, no. 2, pp. 1051–1060, 2022.
I. M. Muhamad, S. A. Wardana, A. Wanto, and A. P. Windarto, “Algoritma Machine Learning untuk penentuan Model Prediksi Produksi Telur Ayam Petelur di Sumatera,” Journal of Informatics, Electrical and Electronics Engineering, vol. 1, no. 4, pp. 126–134, 2022.
M. Mahendra, R. C. Telaumbanua, A. Wanto, and A. P. Windarto, “Akurasi Prediksi Ekspor Tanaman Obat , Aromatik dan Rempah-Rempah Menggunakan Machine Learning,” KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 2, no. 6, pp. 207–215, 2022.
R. Puspadini, A. Wanto, and N. Arminarahmah, “Penerapan ML dengan Teknik Bayesian Regulation untuk Peramalan,” Journal of Computer System and Informatics (JoSYC), vol. 3, no. 3, pp. 147–155, 2022.
N. L. W. S. R. Ginantra, A. D. GS, S. Andini, and A. Wanto, “Pemanfaatan Algoritma Fletcher-Reeves untuk Penentuan Model Prediksi Harga Nilai Ekspor Menurut Golongan SITC,” Building of Informatics, Technology and Science (BITS), vol. 3, no. 4, pp. 679–685, 2022.
N. Arminarahmah, S. D. Rizki, O. A. Putra, U. Islam, K. Muhammad, and A. Al, “Performance Analysis and Model Determination for Forecasting Aluminum Imports Using the Powell-Beale Algorithm,” IJISTECH (International Journal of Information System & Technology), vol. 5, no. 5, pp. 624–632, 2022.
A. Wanto, S. Defit, and A. P. Windarto, “Algoritma Fungsi Perlatihan pada Machine Learning berbasis ANN untuk Peramalan Fenomena Bencana,” RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 2, pp. 254–264, 2021.
R. Sinaga, M. M. Sitomorang, D. Setiawan, A. Wanto, and A. P. Windarto, “Akurasi Algoritma Fletcher-Reeves untuk Prediksi Ekspor Karet Remah Berdasarkan Negara Tujuan Utama,” Journal of Informatics Management and Information Technology, vol. 2, no. 3, pp. 91–99, 2022.
G. W. Bhawika et al., “Implementation of ANN for Predicting the Percentage of Illiteracy in Indonesia by Age Group,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.
A. Wanto et al., “Analysis of the Backpropagation Algorithm in Viewing Import Value Development Levels Based on Main Country of Origin,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.
E. Siregar, H. Mawengkang, E. B. Nababan, and A. Wanto, “Analysis of Backpropagation Method with Sigmoid Bipolar and Linear Function in Prediction of Population Growth,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.
M. K. Z. Sormin, P. Sihombing, A. Amalia, A. Wanto, D. Hartama, and D. M. Chan, “Predictions of World Population Life Expectancy Using Cyclical Order Weight / Bias,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.
A. Wanto et al., “Analysis of the Accuracy Batch Training Method in Viewing Indonesian Fisheries Cultivation Company Development,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.
Y. Andriani, H. Silitonga, and A. Wanto, “Analisis Jaringan Syaraf Tiruan untuk prediksi volume ekspor dan impor migas di Indonesia,” Register: Jurnal Ilmiah Teknologi Sistem Informasi, vol. 4, no. 1, pp. 30–40, 2018.
W. Saputra, J. T. Hardinata, and A. Wanto, “Implementation of Resilient Methods to Predict Open Unemployment in Indonesia According to Higher Education Completed,” JITE (Journal of Informatics and Telecommunication Engineering), vol. 3, no. 1, pp. 163–174, 2019.
N. L. W. S. R. Ginantra et al., “Performance One-step secant Training Method for Forecasting Cases,” Journal of Physics: Conference Series, vol. 1933, no. 1, pp. 1–8, 2021.
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2022 Sari Marito Tondang, Heru Satria Tambunan, Susiani Susiani

Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2022 The authors. Published by Yayasan Literasi Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
The author(s) whose article is published in the JOMLAI journal attain the copyright for their article and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. By submitting the manuscript to JOMLAI, the author(s) agree with this policy. No special document approval is required.
The author(s) guarantee that:their article is original, written by the mentioned author(s),
- has never been published before,
- does not contain statements that violate the law, and
- does not violate the rights of others, is subject to copyright held exclusively by the author(s), and is free from the rights of third parties, and that the necessary written permission to quote from other sources has been obtained by the author(s).
The author(s) retain all rights to the published work, such as (but not limited to) the following rights:
- Copyright and other proprietary rights related to the article, such as patents,
- The right to use the substance of the article in its own future works, including lectures and books,
- The right to reproduce the article for its own purposes,
- The right to archive all versions of the article in any repository, and
- The right to enter into separate additional contractual arrangements for the non-exclusive distribution of published versions of the article (for example, posting them to institutional repositories or publishing them in a book), acknowledging its initial publication in this journal (JOMLAI: Journal of Machine Learning and Artificial Intelligence).
Suppose the article was prepared jointly by more than one author. Each author submitting the manuscript warrants that all co-authors have given their permission to agree to copyright and license notices (agreements) on their behalf and notify co-authors of the terms of this policy. JOMLAI will not be held responsible for anything that may arise because of the writer's internal dispute. JOMLAI will only communicate with correspondence authors.
Authors should also understand that their articles (and any additional files, including data sets, and analysis/computation data) will become publicly available once published. The license of published articles (and additional data) will be governed by a Creative Commons Attribution-ShareAlike 4.0 International License. JOMLAI allows users to copy, distribute, display and perform work under license. Users need to attribute the author(s) and JOMLAI to distribute works in journals and other publication media. Unless otherwise stated, the author(s) is a public entity as soon as the article is published



















