Forecasting of Rubber Production in North Sumatra with Backpropagation Algorithm
DOI:
https://doi.org/10.55123/jomlai.v1i3.917Kata Kunci:
ANN, Prediction, Rubber Production, Machine LearningAbstrak
Rubber is a commodity to produce tires, balloons, and other rubber-based products. Indonesia is the second largest rubber producer and distributor in the world. But, rubber production level tends to fluctuate. Therefore, an analysis is needed to predict rubber production in the future thus rubber plantations, especially folk-owned, can take steps to prevent if declines in production are found. One way that can be done to predict is by utilizing Artificial Neural Network with Backpropagation method, since it provides accurate results. In this research, 10 network architecture models were tested and the best architecture achieved was 10-10-11-1 with accuracy of 96%. With that architecture, predictions are done and resulted in estimated rubber production in North Sumatra for 2021-2025.
Referensi
W. Dewi and R. F. Siahaan, “Sistem Pendukung Keputusan Pemilihan Jenis Tanaman Karet Untuk Menghasilkan Bibit Tanaman Karet Terbaik Menggunakan Metode Topsis,” Jurnal Nasional Komputasi dan Teknologi Informasi, vol. 4, no. 6, pp. 460–468, 2021.
V. Krismawan, M. Muchtolifah, and S. Sishadiyati, “Pengaruh Nilai Tukar, Produksi Karet Indonesia Dan Harga Karet Indonesia Terhadap Ekspor Karet Indonesia Periode Tahun 2008 – 2019,” Jurnal Ekobis Dewantara, vol. 4, no. 3, pp. 134–143, 2021.
H. A. Dalimunthe, P. H. Prihanto, and E. Achmad, “Analisis faktor-faktor yang mempengaruhi produksi karet di Kecamatan Jaluko Kabupaten Muaro Jambi ( studi kasus Desa Muhajirin ),” e-Jurnal Ekonomi Sumberdaya dan Lingkungan, vol. 10, no. 2, pp. 81–90, 2021.
A. Rouf and L. N. Effendi, “Peranan SDM dan SDA Pada Kondisi TM Eksisting Terhadap Perolehan Produktivitas Tanaman Karet,” Seminar Nasional & Call For Paper HUBISINTEK, pp. 1201–1210, 2021.
E. H. Damanik, E. Irawan, and F. Rizki, “Jaringan Syaraf Tiruan Untuk Memprediksi Nilai Siswa SMA Menggunakan Backpropagation,” Jurnal Sistem Informasi dan Ilmu Komputer Prima, vol. 4, no. 2, pp. 1–7, 2021.
R. Winanjaya, “Identifikasi Mahasiswa Berprestasi Menggunakan Algoritma Backpropagation,” vol. 1, no. 2, pp. 162–167, 2020.
B. H. Hayadi, I. G. I. Sudipa, and A. P. Windarto, “Model Peramalan Artificial Neural Network pada Peserta KB Aktif Jalur Pemerintahan menggunakan Artificial Neural Network Back-Propagation,” Matrik: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer, vol. 21, no. 1, pp. 11–20, 2021.
G. Z. Muflih, “Pengaruh Nilai Hidden layer dan Learning rate Terhadap Kecepatan Perlatihan Jaringan Saraf Tiruan Backpropagation,” Jurnal Riset Teknologi Informasi dan Komputer (JURISTIK), vol. 1, no. 2, pp. 12–17, 2021.
Nurhanudin and J. E. Riwuroh, “Prediksi Jumlah Pendaftar Haji Lanjut Usia Menggunakan Jaringan Syaraf Tiruan Backpropagation,” JIKO (Jurnal Informatika dan Komputer), vol. 4, no. 2, pp. 112–121, 2021.
Badan Pusat Statistik Sumatra Utara, “Luas Tanaman dan Produksi Karet Tanaman Perkebunan Rakyat Menurut Kabupaten/Kota,” 2022. .
R. R. A. and S. Natarsyah, “Penerapan Metode Least Square Untuk Prediksi Hasil Sadap Karet,” PROGRESIF, vol. 13, no. 1, pp. 1569–1576, 2017.
A. Nasution, “Forecasting Produksi Karet Menggunakan Metode Weighted Moving Average,” Seminar Nasional Royal (SENAR), no. September, pp. 133–138, 2018.
D. L. Rahakbauw, F. J. Rianekuay, and Y. A. Lesnussa, “Penerapan Metode Fuzzy Mamdani Untuk Memprediksi Jumlah Produksi Karet (Studi Kasus: Data Persediaan Dan Permintaan Produksi Karet Pada Ptp Nusantara XIV (Persero) Kebun Awaya, Teluk Elpaputih, Maluku-Indonesia),” Jurnal Ilmiah Matematika dan Terapan, vol. 16, no. 1, pp. 119–127, 2019.
V. V. Utari, A. Wanto, I. Gunawan, and Z. M. Nasution, “Prediksi Hasil Produksi Kelapa Sawit PTPN IV Bahjambi Menggunakan Algoritma Backpropagation,” Journal of Computer System and Informatics, vol. 2, no. 3, pp. 271–279, 2021.
O. I. Winanda and S. A. Zega, “Prediksi Rating Film Animasi Berdasarkan Elemen Mise En Scene Menggunakan Neural Network,” 2019.
G. W. Bhawika et al., “Implementation of ANN for Predicting the Percentage of Illiteracy in Indonesia by Age Group,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.
A. Wanto et al., “Analysis of the Backpropagation Algorithm in Viewing Import Value Development Levels Based on Main Country of Origin,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.
E. Siregar, H. Mawengkang, E. B. Nababan, and A. Wanto, “Analysis of Backpropagation Method with Sigmoid Bipolar and Linear Function in Prediction of Population Growth,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.
M. K. Z. Sormin, P. Sihombing, A. Amalia, A. Wanto, D. Hartama, and D. M. Chan, “Predictions of World Population Life Expectancy Using Cyclical Order Weight / Bias,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.
A. Wanto et al., “Analysis of the Accuracy Batch Training Method in Viewing Indonesian Fisheries Cultivation Company Development,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.
Y. Andriani, H. Silitonga, and A. Wanto, “Analisis Jaringan Syaraf Tiruan untuk prediksi volume ekspor dan impor migas di Indonesia,” Register: Jurnal Ilmiah Teknologi Sistem Informasi, vol. 4, no. 1, pp. 30–40, 2018.
W. Saputra, J. T. Hardinata, and A. Wanto, “Implementation of Resilient Methods to Predict Open Unemployment in Indonesia According to Higher Education Completed,” JITE (Journal of Informatics and Telecommunication Engineering), vol. 3, no. 1, pp. 163–174, 2019.
N. L. W. S. R. Ginantra et al., “Performance One-step secant Training Method for Forecasting Cases,” Journal of Physics: Conference Series, vol. 1933, no. 1, pp. 1–8, 2021.
A. M. Indrawan and A. P. Kusuma, “Analisis Algoritma Jaringan Syaraf Tiruan Dengan Metode Backpropagation Dalam Mendeteksi Keahlian Mahasiswa Program Studi Teknik Informatika Universitas Islam Balitar,” Jurnal MNEMONIC, vol. 5, no. 1, pp. 9–13, 2022.
E. P. Cynthia and E. Ismanto, “Jaringan Syaraf Tiruan Algoritma Backpropagation Dalam Memprediksi Ketersediaan Komoditi Pangan Provinsi Riau,” Seminar Nasional Teknologi Informasi, Komunikasi dan Industri (SNTIKI) 9, pp. 18–19, 2017
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2022 Josua Fernando Simanjuntak, Riki Winanjaya, Wendi Robiansyah

Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2022 The authors. Published by Yayasan Literasi Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
The author(s) whose article is published in the JOMLAI journal attain the copyright for their article and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. By submitting the manuscript to JOMLAI, the author(s) agree with this policy. No special document approval is required.
The author(s) guarantee that:their article is original, written by the mentioned author(s),
- has never been published before,
- does not contain statements that violate the law, and
- does not violate the rights of others, is subject to copyright held exclusively by the author(s), and is free from the rights of third parties, and that the necessary written permission to quote from other sources has been obtained by the author(s).
The author(s) retain all rights to the published work, such as (but not limited to) the following rights:
- Copyright and other proprietary rights related to the article, such as patents,
- The right to use the substance of the article in its own future works, including lectures and books,
- The right to reproduce the article for its own purposes,
- The right to archive all versions of the article in any repository, and
- The right to enter into separate additional contractual arrangements for the non-exclusive distribution of published versions of the article (for example, posting them to institutional repositories or publishing them in a book), acknowledging its initial publication in this journal (JOMLAI: Journal of Machine Learning and Artificial Intelligence).
Suppose the article was prepared jointly by more than one author. Each author submitting the manuscript warrants that all co-authors have given their permission to agree to copyright and license notices (agreements) on their behalf and notify co-authors of the terms of this policy. JOMLAI will not be held responsible for anything that may arise because of the writer's internal dispute. JOMLAI will only communicate with correspondence authors.
Authors should also understand that their articles (and any additional files, including data sets, and analysis/computation data) will become publicly available once published. The license of published articles (and additional data) will be governed by a Creative Commons Attribution-ShareAlike 4.0 International License. JOMLAI allows users to copy, distribute, display and perform work under license. Users need to attribute the author(s) and JOMLAI to distribute works in journals and other publication media. Unless otherwise stated, the author(s) is a public entity as soon as the article is published



















