Analysis of Open Unemployment Rate Prediction Using Backpropagation Method

Penulis

  • P.A.M. Zidane R.W.P.P. Zer STIKOM Tunas Bangsa
  • Dimas Prayogi STIKOM Tunas Bangsa
  • M Arif Y Sinaga STIKOM Tunas Bangsa
  • Olivia Diwani Saragih STIKOM Tunas Bangsa
  • Victor Asido Elyakim P STIKOM Tunas Bangsa

DOI:

https://doi.org/10.55123/jomlai.v4i2.5957

Kata Kunci:

Optimization , ANN , Prediction , Machine Learning , Covid-19

Abstrak

The open unemployment rate (TPT) is one of the important indicators in assessing the economic health of a region. This study aims to develop an accurate prediction model for the open unemployment rate using the backpropagation algorithm, as well as to evaluate the factors that influence the prediction. Accurate TPT prediction can help the government and policy makers in designing strategies to alleviate unemployment based on the results of the analysis of the developed model. This study aims to analyze and predict the Open Unemployment Rate (TPT) in various provinces in Indonesia in 2024 to 2026 using an artificial neural network model with the Backpropagation algorithm. Based on the test results, the 3-6-1 architecture model showed a prediction ability with 100% accuracy, while other architectures also gave very good results, with 100% accuracy for the 3-3-1 model and 97.06% for the 3-12-1 model. The TPT prediction results show that the unemployment rate is predicted to continue to increase from year to year, indicating the potential for an increase in the number of unemployed in the future. On the other hand, the accuracy analysis shows that each architecture produces different results, with the 3-6-1 architecture producing a longer time for the testing process, but still providing optimal accuracy. This finding illustrates that choosing the right architecture greatly affects the accuracy and efficiency in predicting TPT, which can be an important basis in formulating policies to eradicate unemployment in Indonesia.

Referensi

M. R. Azhar and I. Gunawan, “Implementasi Algoritma Backpropagation Dalam Memprediksi Jumlah Penduduk Usia Produktif Pada Kota Pematangsiantar,” vol. 2, no. 2, pp. 199–209, 2021.

E. E. Prayogo, I. Indriati, and C. Dewi, “Klasifikasi Bidang Keunggulan Mahasiswa menggunakan Metode Backpropagation dan Seleksi Fitur Information Gain (Studi Kasus: Departemen Teknik Informatika …,” J. Pengemb. Teknol. …, vol. 7, no. 1, pp. 169–178, 2023.

L. Widyarsi and H. Usman, “Penggunaan Data Google Trends untuk Peramalan Tingkat Pengangguran Terbuka di Tingkat Nasional dan Regional di Provinsi Jawa Barat,” Semin. Nas. Off. Stat., vol. 2021, no. 1, pp. 980–990, 2021, doi: 10.34123/semnasoffstat.v2021i1.842.

Y. A. Lesnussa and E. Risamasu, “Aplikasi Jaringan Syaraf Tiruan Backpropagation Untuk Meramalkan Tingkat Pengangguran Terbuka (TPT) Di Provinsi Maluku,” Sainmatika J. Ilm. Mat. dan Ilmu Pengetah. Alam, vol. 17, no. 2, p. 89, 2020, doi: 10.31851/sainmatika.v17i2.3434.

W. Saputra, J. T. Hardinata, and A. Wanto, “Penerapan Metode Resilient dalam Menentukan Model Arsitektur Terbaik untuk Prediksi Pengangguran Terbuka di Indonesia,” Semin. Nas. Apl. Teknol. Inf., pp. 21–29, 2019.

M. Setiana, B. Rahayudi, and L. Muflikhah, “Metode Backpropogation untuk Memprediksi Tingkat Pengangguran Terbuka ( TPT ) di Provinsi Jawa Barat dengan Optimasi Adam,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 1, no. 1, pp. 1–10, 2017.

R. Yulistiani, N. C. Putra, Q. Said, and I. Ernawati, “Klasifikasi dan Prediksi Tingkat Pengangguran Terbuka di Indonesia Menggunakan Metode Classification and Regression Tree (CART),” Semin. Nas. Mhs. Ilmu Komput. dan Apl., pp. 123–130, 2020.

M. R. Siregar, “Prediksi Angka Harapan Lama Sekolah Provinsi Sumatra Utara Dengan Backpropagation,” J. JPILKOM (Jurnal Penelit. Ilmu Komputer), vol. 2, no. 1, 2024.

W. M. Rahmat, N. Hidayat, and A. A. Soebroto, “Prediksi Penjualan Ponsel Pintar menggunakan Metode Jaringan Syaraf Tiruan Backpropagation Kombinasi Particle Swarm Optimization,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 1, pp. 439–445, 2023, [Online]. Available: http://j-ptiik.ub.ac.id

R. Dina, “Optimasi Backpropagation Neural Network Menggunakan Metode Algoritma Genetika Dalam Memprediksi Jumlah Pengangguran,” 2019.

A. Wanto, “Prediksi Produktivitas Jagung Di Indonesia Sebagai Upaya Antisipasi Impor Menggunakan Jaringan Saraf Tiruan Backpropagation,” SINTECH (Science Inf. Technol. J., vol. 2, no. 1, pp. 53–62, 2019, doi: 10.31598/sintechjournal.v2i1.355.

Y. F. Arifin, D. E. Ratnawati, and P. P. Adikara, “Implementasi Gabungan Metode Bayesian dan Backpropagation untuk Peramalan Jumlah Pengangguran Terbuka di Indonesia,” J. Pengemb. Teknol. Inf. Dan Ilmu Komput., vol. 1, no. 4, pp. 330–340, 2017.

G. Pratama, S. Adinugroho, and B. Rahayudi, “Penggunaan Fungsi Aktivasi Linier dan Logarithmic Normalization pada Metode Backpropagation untuk Peramalan Luas Kebakaran Hutan,” J. Pengemb. …, vol. 3, no. 12, pp. 11003–11008, 2020, [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/6839

D. E. Ratnawati, D. P. Adwandhal, Y. F. Arifin, and Machsus, “Perbandingan Antara Metode Bayesian-Backpropagation dan Genetic -Backpropagation Pada Prediksi Jumlah Pengangguran Terbuka di Indonesia,” Pros. Semin. Nas. Penelit. Pengabdi. Pada Masy., 2016.

T. Kurniawan, R. Maulana, and E. Setiawan, “Sistem Pendeteksi Premature Ventricular Contraction Berdasarkan Fitur Geometri Segitiga Dan Amplitudo R Menggunakan Metode Jaringan Syaraf Tiruan,” … Inf. dan Ilmu Komput. e-ISSN, vol. 5, no. 6, pp. 2418–2425, 2021, [Online]. Available: http://j-ptiik.ub.ac.id

Diterbitkan

2025-06-20

Cara Mengutip

P.A.M. Zidane R.W.P.P. Zer, Dimas Prayogi, M Arif Y Sinaga, Olivia Diwani Saragih, & Victor Asido Elyakim P. (2025). Analysis of Open Unemployment Rate Prediction Using Backpropagation Method. JOMLAI: Journal of Machine Learning and Artificial Intelligence, 4(2), 61–68. https://doi.org/10.55123/jomlai.v4i2.5957

Terbitan

Bagian

Articles