Analysis of Egg Production Forecasting by Province in Indonesia Using the ARIMA Algorithm

Penulis

  • Khaswa Giovani Simanungkalit STIKOM Tunas Bangsa Pematangsiantar
  • Muhammad Fikri Azhari STIKOM Tunas Bangsa Pematangsiantar
  • Muhammad ihsan Raditya STIKOM Tunas Bangsa Pematangsiantar
  • Indra Lesmana Putra STIKOM Tunas Bangsa Pematangsiantar
  • Victor Asido Elyakim P STIKOM Tunas Bangsa Pematangsiantar

DOI:

https://doi.org/10.55123/jomlai.v4i1.5765

Kata Kunci:

Chicken Egg Production , ARIMA , Forecasting , Time Series Data , Provincial Prediction

Abstrak

The production of chicken eggs in various regions of Indonesia shows significant variations over time, making it necessary to apply an appropriate predictive approach to support national food planning and distribution strategies. This study employs the ARIMA (AutoRegressive Integrated Moving Average) method to forecast regional chicken egg production based on secondary data from 2018 to 2024. The research steps include data collection, stationarity testing, model parameter determination, as well as the modeling process and result evaluation. The predictions indicate that total national chicken egg production will experience a significant increase, from 12.5 billion eggs in 2025 to 18.57 billion eggs in 2026. Provinces on the island of Java, such as East Java, Central Java, and West Java, are expected to remain the main production centers. Meanwhile, provinces in eastern Indonesia show less stable prediction results, indicating the need for improved data quality and the application of more adaptive models. Overall, the ARIMA model is considered effective for modeling short-term trends, although it has limitations in handling data with high fluctuations.

Referensi

S. Maesaroh, F. Firmansyah, Y. -, and W. M. Fauzi, “PURWARUPA SMART SYSTEM MONITORING PRODUKSI TELUR AYAM BERBASIS INTERNET OF THINGS (IOT),” Power Elektronik : Jurnal Orang Elektro, vol. 12, no. 1, p. 67, Jan. 2023, doi: 10.30591/polektro.v12i1.4793.

A. Dan et al., “ANALYSIS AND PREDICTION OF EGG PRODUCTION PATTERN OF FREE-,” vol. 4, no. 2, pp. 111–122, 2024.

S. Suseno and Suryo Wibowo, “Penerapan Metode ARIMA dan SARIMA Pada Peramalan Penjualan Telur Ayam Pada PT Agromix Lestari Group,” Jurnal Teknologi dan Manajemen Industri Terapan, vol. 2, no. I, pp. 33–40, 2023, doi: 10.55826/tmit.v2ii.85.

S. Suseno and Suryo Wibowo, “Penerapan Metode ARIMA dan SARIMA Pada Peramalan Penjualan Telur Ayam Pada PT Agromix Lestari Group,” Jurnal Teknologi dan Manajemen Industri Terapan, vol. 2, no. I, pp. 33–40, 2023, doi: 10.55826/tmit.v2ii.85.

S. H. Santosa, A. P. Hidayat, and R. Siskandar, “Analisis permintaan telur ayam menggunakan metode peramalan kuantitaif, studi kasus : agen telur ABC Chicken egg demand analysis using quantitative forecasting method, case study: ABC egg agent,” Indonesian Journal of Science, vol. 3, no. 1, pp. 1–9, 2022.

M. D. Wisodewo, H. A. Rosyid, and A. R. Taufani, “Forecasting chicken meat and egg in indonesia using ARIMA and SARIMA,” Jurnal Informatika, vol. 16, no. 1, p. 8, Jan. 2022, doi: 10.26555/jifo.v16i1.a25416.

T. Liu, S. Liu, and L. Shi, “ARIMA Modelling and Forecasting,” 2020, pp. 61–85. doi: 10.1007/978-981-15-0321-4_4.

Y. Du, “A time series forecasting system based on ARIMA for industrial big data,” in International Conference on Computer, Artificial Intelligence, and Control Engineering (CAICE 2022), Y. Yan, Ed., SPIE, Dec. 2022, p. 91. doi: 10.1117/12.2641141.

J. J. Pangaribuan, F. Fanny, O. P. Barus, and R. Romindo, “Prediksi Penjualan Bisnis Rumah Properti Dengan Menggunakan Metode Autoregressive Integrated Moving Average (ARIMA),” Jurnal Sistem Informasi Bisnis, vol. 13, no. 2, pp. 154–161, 2023, doi: 10.21456/vol13iss2pp154-161.

H. Panjaitan, A. Prahutama, and S. Sudarno, “PERAMALAN JUMLAH PENUMPANG KERETA API MENGGUNAKAN METODE ARIMA, INTERVENSI DAN ARFIMA (Studi Kasus : Penumpang Kereta Api Kelas Lokal EkonomiDAOP IV Semarang),” Jurnal Gaussian, vol. 7, no. 1, pp. 96–109, 2018, doi: 10.14710/j.gauss.v7i1.26639.

J. Cheng, H. Deng, G. Sun, P. Guo, and J. Zhang, “Application of ARIMA Model in Financial Time Series in Stocks,” 2020, pp. 232–243. doi: 10.1007/978-3-030-57884-8_21.

T. C. Mills, “ARIMA Models for Nonstationary Time Series,” in Applied Time Series Analysis, Elsevier, 2019, pp. 57–69. doi: 10.1016/B978-0-12-813117-6.00004-1.

C. da Silva, J. Nisenson, and J. Boisvert, “Comparing and Detecting Stationarity and Dataset Shift,” 2023, pp. 37–42. doi: 10.1007/978-3-031-19845-8_3.

M. I. N. Basariya and P. Murugesan, “An approach to arrive at stationarity in time series data,” International Journal of Applied Management Science, vol. 14, no. 3, p. 221, 2022, doi: 10.1504/IJAMS.2022.125122.

H. A. Elsayir, “Residual Analysis for Auto-Correlated Econometric Model,” Open J Stat, vol. 09, no. 01, pp. 48–61, 2019, doi: 10.4236/ojs.2019.91005.

G. Chavez, D. Y. Zhao, A. Haque, R. Nazerali, and D. F. Amanatullah, “Analysis of Computer Vision Methods for Counting Surgical Instruments,” Surg Innov, vol. 28, no. 3, pp. 392–393, Jun. 2021, doi: 10.1177/1553350620956425.

C. Dong, “Stock Trend Forecasting Using the ARIMA Model,” Highlights in Science, Engineering and Technology, vol. 16, pp. 56–62, Nov. 2022, doi: 10.54097/hset.v16i.2239.

O.-D. Ilie, A. Ciobica, and B. Doroftei, “Testing the Accuracy of the ARIMA Models in Forecasting the Spreading of COVID-19 and the Associated Mortality Rate,” Medicina (B Aires), vol. 56, no. 11, p. 566, Oct. 2020, doi: 10.3390/medicina56110566.

N. Bumanis, A. Kviesis, L. Paura, I. Arhipova, and M. Adjutovs, “Hen Egg Production Forecasting: Capabilities of Machine Learning Models in Scenarios with Limited Data Sets,” Applied Sciences, vol. 13, no. 13, p. 7607, Jun. 2023, doi: 10.3390/app13137607.

J. Liu et al., “Novel production prediction model of gasoline production processes for energy saving and economic increasing based on AM-GRU integrating the UMAP algorithm,” Energy, vol. 262, p. 125536, Jan. 2023, doi: 10.1016/j.energy.2022.125536.

Diterbitkan

2025-03-20

Cara Mengutip

Khaswa Giovani Simanungkalit, Muhammad Fikri Azhari, Muhammad ihsan Raditya, Indra Lesmana Putra, & Victor Asido Elyakim P. (2025). Analysis of Egg Production Forecasting by Province in Indonesia Using the ARIMA Algorithm. JOMLAI: Journal of Machine Learning and Artificial Intelligence, 4(1), 31–37. https://doi.org/10.55123/jomlai.v4i1.5765

Terbitan

Bagian

Articles