Implementation of the Multiple Linear Regression Method to Predict Student Achievement Based on Social Status and Discipline

Penulis

  • Reynaldo Saragih STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Indra Gunawan STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Iin Parlina STIKOM Tunas Bangsa, Pematangsiantar, Indonesia

DOI:

https://doi.org/10.55123/jomlai.v2i2.3128

Kata Kunci:

Linear Regression, Student achievement, Prediction, Social status, Discipline

Abstrak

This research aims to implement the multiple linear regression method as an analytical tool to predict the academic performance level of students at SMA Kartika 1-4. The primary focus of the analysis will be placed on four critical predictor variables, namely parental income, discipline, attendance, and academic achievement. The multiple linear regression method is chosen because it can provide a robust statistical foundation for understanding the complex relationships between these variables and academic performance. Through the collection of data related to students' socio-economic status and their level of discipline, this research will build a multiple linear regression model to predict the level of student performance. The results of this research are expected to provide a more comprehensive understanding of the factors influencing students' performance in the environment of SMA Kartika 1-4. In-depth analysis of the relationships between parental income, discipline, attendance, and academic achievement can offer valuable contextual insights. This research is anticipated to provide a basis for the development of strategies or policies at the school level to improve student performance by paying specific attention to these aspects.

Referensi

I. A. Setyani and Y. R. Sipayung, ‘Sistem Pendukung Keputusan Menentukan Siswa Berprestasi dengan Metode SAW (Simple Addtive Weighting)’, Jurnal Sistem Komputer dan Informatika (JSON), vol. 4, no. 4, pp. 632–641, 2023, doi: 10.30865/json.v4i4.6179.

E. J. A. Sihombing and P. Yugopuspito, ‘Pengaruh Self-Efficacy, Technology Acceptance, dan Motivasi Belajar Terhadap Prestasi Akademis Siswa dalam Online Learning di SMPK Kalam Kudus Dumai’, Journal on Education, vol. 5, no. 4, pp. 12881–12896, 2023, doi: 10.31004/joe.v5i4.2276.

A. Nasution et al., ‘Analisis Pemahaman Konseptual Terhadap Motivasi Dan Gaya Belajar Siswa Bimbingan Belajar’, Jurnal Kependidikan, vol. 8, no. 1, pp. 134–146, 2023.

M. Ibnu Sholeh, ‘Menghadapi Persaingan Sengit Lembaga Pendidikan: Strategi Diferensiasi dalam Pemasaran Lembaga Pendidikan Islam di Indonesia’, AKSI: Jurnal Manajemen Pendidikan Islam, vol. 1, no. 3, pp. 192–222, 2020, doi: 10.37348/aksi.v1i3.259.

Rinda Ristiyani and M. C. Asmawan, ‘Pembentukan Karakter Peserta Didik Melalui Kegiatan Pramuka’, Journal of Education Action Research, vol. 7, no. 4, pp. 535–543, 2023, doi: 10.23887/jear.v7i4.68688.

T. Prasetyo, N. Alya, and F. Rahmatillah, ‘Peran Orang Tua Dalam Meningkatkan Prestasi Akademik Anak: Studi Kualitatif Tentang Pola Asuh Dan Pembinaan Keluarga’, Jurnal Penjaminan Mutu, vol. 9, no. 2, pp. 207–215, 2023, [Online]. Available: http://ojs.uhnsugriwa.ac.id/index.php/JPM

N. Arminarahmah, A. D. GS, G. W. Bhawika, M. P. Dewi, and A. Wanto, ‘Mapping the Spread of Covid-19 in Asia Using Data Mining X-Means Algorithms’, IOP Conference Series: Materials Science and Engineering, vol. 1071, no. 1, p. 012018, 2021, doi: 10.1088/1757-899x/1071/1/012018.

T. H. Sinaga, A. Wanto, I. Gunawan, S. Sumarno, and Z. M. Nasution, ‘Implementation of Data Mining Using C4.5 Algorithm on Customer Satisfaction in Tirta Lihou PDAM’, Journal of Computer Networks, Architecture, and High-Performance Computing, vol. 3, no. 1, pp. 9–20, 2021, doi: 10.47709/cnahpc.v3i1.923.

A. Pradipta, D. Hartama, A. Wanto, S. Saifullah, and J. Jalaluddin, ‘The Application of Data Mining in Determining Timely Graduation Using the C45 Algorithm’, IJISTECH (International Journal of Information System & Technology), vol. 3, no. 1, pp. 31–36, 2019, doi: 10.30645/ijistech.v3i1.30.

N. A. Febriyati, A. D. Gs, and A. Wanto, ‘GRDP Growth Rate Clustering in Surabaya City uses the K- Means Algorithm’, International Journal of Information System & Technology, vol. 3, no. 2, pp. 276–283, 2020, doi: 10.30645/ijistech.v3i2.60.

I. Parlina et al., ‘Naive Bayes Algorithm Analysis to Determine the Percentage Level of visitors the Most Dominant Zoo Visit by Age Category’, in Journal of Physics: Conference Series, Aug. 2019, p. 012031. doi: 10.1088/1742-6596/1255/1/012031.

S. R. Ningsih, R. Wulansari, D. Hartama, A. P. Windarto, and A. Wanto, ‘Analysis of PROMETHEE II Method on Selection of Lecturer Community Service Grant Proposals’, in Journal of Physics: Conference Series, Aug. 2019, p. 012004. doi: 10.1088/1742-6596/1255/1/012004.

P. Alkhairi, L. P. Purba, A. Eryzha, A. P. Windarto, and A. Wanto, ‘The Analysis of the ELECTREE II Algorithm in Determining the Doubts of the Community Doing Business Online’, in Journal of Physics: Conference Series, Institute of Physics Publishing, Sep. 2019, p. 012010. doi: 10.1088/1742-6596/1255/1/012010.

R. Watrianthos, W. A. Ritonga, A. Rengganis, A. Wanto, and M. Isa Indrawan, ‘Implementation of PROMETHEE-GAIA Method for Lecturer Performance Evaluation’, Journal of Physics: Conference Series, vol. 1933, no. 1, p. 012067, 2021, doi: 10.1088/1742-6596/1933/1/012067.

S. Sundari, A. Wanto, Saifullah, and I. Gunawan, ‘Sistem Pendukung Keputusan Dengan Menggunakan Metode Electre Dalam Merekomendasikan Dosen Berprestasi Bidang Ilmu Komputer (Study Kasus di AMIK & STIKOM Tunas Bangsa)’, in Seminar Nasional Multi Disiplin Ilmu, 2017, pp. 1–6. doi: 10.17605/OSF.IO/4TWG6.

M. Widyasuti, A. Wanto, D. Hartama, and E. Purwanto, ‘Rekomendasi Penjualan Aksesoris Handphone Menggunakan Metode Analitycal Hierarchy Process (AHP)’, Konferensi Nasional Teknologi Informasi dan Komputer (KOMIK), vol. I, no. 1, pp. 27–32, 2017.

I. A. R. Simbolon, F. Yatussa’ada, and A. Wanto, ‘Penerapan Algoritma Backpropagation dalam Memprediksi Persentase Penduduk Buta Huruf di Indonesia’, Jurnal Informatika Upgris, vol. 4, no. 2, pp. 163–169, 2018, doi: 10.26877/jiu.v4i2.2423.

W. Saputra, J. T. Hardinata, and A. Wanto, ‘Resilient method in determining the best architectural model for predicting open unemployment in Indonesia’, IOP Conference Series: Materials Science and Engineering, vol. 725, no. 1, p. 012115, Jan. 2020, doi: 10.1088/1757-899X/725/1/012115.

E. Hartato, D. Sitorus, and A. Wanto, ‘Analisis Jaringan Saraf Tiruan Untuk Prediksi Luas Panen Biofarmaka Di Indonesia’, SemanTIK, vol. 4, no. 1, pp. 49–56, 2018, doi: 10.55679/semantik.v4i1.4201.

B. K. Sihotang and A. Wanto, ‘Analisis Jaringan Syaraf Tiruan Dalam Memprediksi Jumlah Tamu Pada Hotel Non Bintang’, Jurnal Teknologi Informasi Techno, vol. 17, no. 4, pp. 333–346, 2018, doi: 10.33633/tc.v17i4.1762.

I. S. Purba and A. Wanto, ‘Prediksi Jumlah Nilai Impor Sumatera Utara Menurut Negara Asal Menggunakan Algoritma Backpropagation’, Jurnal Teknologi Informasi Techno, vol. 17, no. 3, pp. 302–311, 2018, doi: 10.33633/tc.v17i3.1769.

S. Widaningsih and S. Yusuf, ‘Penerapan Data Mining untuk Memprediksi Siswa Berprestasi dengan Menggunakan Algoritma K Nearest Neighbor’, JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 9, no. 3, pp. 2598–2611, 2022, doi: 10.35957/jatisi.v9i3.859.

F. P. Dewi, P. S. Aryni, and Y. Umaidah, ‘Implementasi Algoritma K-Means Clustering Seleksi Siswa Berprestasi Berdasarkan Keaktifan dalam Proses Pembelajaran’, JISKA (Jurnal Informatika Sunan Kalijaga), vol. 7, no. 2, pp. 111–121, 2022, doi: 10.14421/jiska.2022.7.2.111-121.

A. M. Husein and R. E. H. Hutauruk, ‘Penerapan Algoritma C4.5 Dalam Pemilihan Siswa Berprestasi di SMPN 10 Medan’, Digital Transformation Technology, vol. 2, no. 1, pp. 8–11, 2022, doi: 10.47709/digitech.v2i1.1768.

Y. Asohi and A. Andri, ‘Impelementasi Algoritma Regresi Linier Berganda Untuk Prediksi Penjualan’, Jurnal Nasional Ilmu Komputer, vol. 1, no. 3, pp. 149–158, 2020, doi: 10.47747/jurnalnik.v1i3.161.

Diterbitkan

2023-06-30

Cara Mengutip

Saragih, R., Gunawan, I., & Parlina, I. (2023). Implementation of the Multiple Linear Regression Method to Predict Student Achievement Based on Social Status and Discipline. JOMLAI: Journal of Machine Learning and Artificial Intelligence, 2(2), 133–142. https://doi.org/10.55123/jomlai.v2i2.3128

Terbitan

Bagian

Articles