Determining Product Suitability using Rule-Based Model with C4.5 Algorithm

Penulis

  • Chintya Carolina Situmorang STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Dedy Hartama STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Irfan Sudahri Damanik STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Jaya Tata Hardinata Universitas HKBP Nommensen Pematangsiantar, Pematangsiantar, Indonesia

DOI:

https://doi.org/10.55123/jomlai.v2i1.1923

Kata Kunci:

Data Mining, Decision Tree, Rules Model, C4.5, Goods Eligibility

Abstrak

A hotel warehouse must have orderly, good, safe, comfortable, and usable procurement of goods. The common issue that occurs in a warehouse is damaged and unusable goods. The fluctuating production demand for goods sometimes leads to neglecting the quality of the goods in the warehouse. To determine usable goods, appropriate recommendations are needed. The C4.5 algorithm with data mining techniques is an appropriate recommendation for analyzing a large amount of data for classification. The data used in this study is the inventory data of Hotel Sapadia Pematangsiantar's warehouse. Implementing the C4.5 algorithm that produces a Decision Tree can assist the warehouse in determining which goods are still usable for hotel activities. This study resulted in the best variable from the rule model used to determine the feasibility of goods being the physical condition of the goods. The accuracy of the rule model generated from the C4.5 Algorithm modeling is 99.02% against the feasibility of goods.

Referensi

A. Dedy dan Y. Alfandi, “Pengaruh kualitas pelayanan dan fasilitas hotel terhadap kepuasan pelanggan di sari ater hot springs resort ciater,” Jurnal Sains Manajemen, vol. 4, no. 1, hal. 18–25, 2022.

S. S. S. P. Sitorus dan A. Suseno, “Evaluasi Pengendalian Persediaan Barang Dagang,” Jurnal Serambi Engineering, vol. 8, no. 2, hal. 5517–5527, 2023.

S. H. Amira, “Implementation and evaluation between single-used expandable strategy and environmental impact on supply chain and pallets on pt. sumber rezeki palletindo,” COSTING: Journal of Economic, Business and Accounting, vol. 6, no. 2, hal. 1715–1732, 2023.

I. S. Purba dkk., “Accuracy Level of Backpropagation Algorithm to Predict Livestock Population of Simalungun Regency in Indonesia,” Journal of Physics: Conference Series, vol. 1255, no. 1, hal. 1–6, 2019.

W. Saputra, J. T. Hardinata, dan A. Wanto, “Resilient method in determining the best architectural model for predicting open unemployment in Indonesia,” IOP Conference Series: Materials Science and Engineering, vol. 725, no. 1, hal. 1–7, 2020.

I. A. R. Simbolon, F. Yatussa’ada, dan A. Wanto, “Penerapan Algoritma Backpropagation dalam Memprediksi Persentase Penduduk Buta Huruf di Indonesia,” Jurnal Informatika Upgris, vol. 4, no. 2, hal. 163–169, 2018.

A. Wanto dan J. T. Hardinata, “Estimations of Indonesian poor people as poverty reduction efforts facing industrial revolution 4.0,” IOP Conference Series: Materials Science and Engineering, vol. 725, no. 1, hal. 1–8, 2020.

R. E. Pranata, S. P. Sinaga, dan A. Wanto, “Estimasi Wisatawan Mancanegara Yang Datang ke Sumatera Utara Menggunakan Jaringan Saraf,” Jurnal semanTIK, vol. 4, no. 1, hal. 97–102, 2018.

W. Saputra, J. T. Hardinata, dan A. Wanto, “Implementation of Resilient Methods to Predict Open Unemployment in Indonesia According to Higher Education Completed,” JITE (Journal of Informatics and Telecommunication Engineering), vol. 3, no. 1, hal. 163–174, Jul 2019.

A. Wanto dkk., “Levenberg-Marquardt Algorithm Combined with Bipolar Sigmoid Function to Measure Open Unemployment Rate in Indonesia,” in The 3rd International Conference ofComputer, Environment, Agriculture, Social Science, Health Science, Engineering andTechnology (ICEST), 2021, no. 1, hal. 22–28.

M. A. Hanafiah dan A. Wanto, “Implementation of Data Mining Algorithms for Grouping Poverty Lines by District/City in North Sumatra,” International Journal of Information System & Technology, vol. 3, no. 2, hal. 315–322, 2020.

A. Pradipta, D. Hartama, A. Wanto, S. Saifullah, dan J. Jalaluddin, “The Application of Data Mining in Determining Timely Graduation Using the C45 Algorithm,” IJISTECH (International Journal of Information System & Technology), vol. 3, no. 1, hal. 31–36, 2019.

I. Parlina dkk., “Naive Bayes Algorithm Analysis to Determine the Percentage Level of visitors the Most Dominant Zoo Visit by Age Category,” Journal of Physics: Conference Series, vol. 1255, no. 1, hal. 012031, 2019.

N. Arminarahmah, A. D. GS, G. W. Bhawika, M. P. Dewi, dan A. Wanto, “Mapping the Spread of Covid-19 in Asia Using Data Mining X-Means Algorithms,” IOP Conference Series: Materials Science and Engineering, vol. 1071, no. 1, hal. 1–7, 2021.

T. H. Sinaga, A. Wanto, I. Gunawan, S. Sumarno, dan Z. M. Nasution, “Implementation of Data Mining Using C4.5 Algorithm on Customer Satisfaction in Tirta Lihou PDAM,” Journal of Computer Networks, Architecture, and High-Performance Computing, vol. 3, no. 1, hal. 9–20, 2021.

T. Imandasari, E. Irawan, A. P. Windarto, dan A. Wanto, “Algoritma Naive Bayes Dalam Klasifikasi Lokasi Pembangunan Sumber Air,” in Prosiding Seminar Nasional Riset Information Science (SENARIS), 2019, vol. 1, hal. 750–761.

Diterbitkan

2023-03-31

Cara Mengutip

Situmorang, C. C., Hartama, D. ., Damanik, I. S., & Hardinata, J. T. (2023). Determining Product Suitability using Rule-Based Model with C4.5 Algorithm. JOMLAI: Journal of Machine Learning and Artificial Intelligence, 2(1), 19–32. https://doi.org/10.55123/jomlai.v2i1.1923

Terbitan

Bagian

Articles