Application of the FP-Growth Algorithm in Analyzing Patterns and Layout of Foodstuffs
DOI:
https://doi.org/10.55123/jomlai.v1i4.1673Kata Kunci:
Food Material, Data Mining, Layout, Gono Shop, FP-GrowthAbstrak
The purpose of this study was to determine the pattern and layout of the appropriate goods in Gono Stores using the FP-Growth Algorithm. Gono Store is a store that is engaged in the sale of food ingredients located in Nagori Dolok Kataran, Kec. Dolok Batu Nanggar. The arrangement of the layout of the goods greatly affects the volume of sales. However, in setting the layout at the Gono Store, there are some problems, namely the lack of knowledge of the shop owner in setting the layout . The FP-Growth algorithm is one of the alternative data mining algorithms that can be used to determine groups of data that often appear (Frequent item sets) in a set of data.The source of the research data used is by conducting observations and interviews at Gono Stores. From the overall results of the sales data 10 rules are formed with the minimum value limit of Support = 0.3and Confidence = 0,8. Its hoped that the result of this study will provide benefits in the form of information that can help shop owners in analyzing the pattern and layout of foodstuffs.
Referensi
M. Nugraheni, “Makanan dan kesehatan,” Universitas Negeri Yogyakarta, pp. 1–14, 2015.
K. D. A. Putra and I. N. Nurcaya, “Pengaruh Layout Toko Dan Visual Merchandising Toko Terhadap Kepuasan Kerja Karyawan Supermarket Tiara Dewata Denpasar,” E-Jurnal Manajemen Universitas Udayana, vol. 8, no. 5, p. 3086, 2019.
A. A. Hafidzi, Pelayanan Terhadap Keputusan Pembelian ( Studi Kasus pada Swalayan Bravo di Kota Bojonegoro ). 2013.
N. L. W. S. R. Ginantra et al., “Performance One-step secant Training Method for Forecasting Cases,” Journal of Physics: Conference Series, vol. 1933, no. 1, pp. 1–8, 2021.
A. Wanto et al., “Epoch Analysis and Accuracy 3 ANN Algorithm using Consumer Price Index Data in Indonesia,” in Proceedings of the 3rd International Conference of Computer, Environment, Agriculture, Social Science, Health Science, Engineering and Technology (ICEST), 2021, no. 1, pp. 35–41.
T. Afriliansyah et al., “Implementation of Bayesian Regulation Algorithm for Estimation of Production Index Level Micro and Small Industry,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.
J. Wahyuni, Y. W. Paranthy, and A. Wanto, “Analisis Jaringan Saraf Dalam Estimasi Tingkat Pengangguran Terbuka Penduduk Sumatera Utara,” Jurnal Infomedia, vol. 3, no. 1, pp. 18–24, 2018.
E. Hartato, D. Sitorus, and A. Wanto, “Analisis Jaringan Saraf Tiruan Untuk Prediksi Luas Panen Biofarmaka di Indonesia,” Jurnal semanTIK, vol. 4, no. 1, pp. 49–56, 2018.
B. K. Sihotang and A. Wanto, “Analisis Jaringan Syaraf Tiruan Dalam Memprediksi Jumlah Tamu Pada Hotel Non Bintang,” Jurnal Teknologi Informasi Techno, vol. 17, no. 4, pp. 333–346, 2018.
I. S. Purba and A. Wanto, “Prediksi Jumlah Nilai Impor Sumatera Utara Menurut Negara Asal Menggunakan Algoritma Backpropagation,” Jurnal Teknologi Informasi Techno, vol. 17, no. 3, pp. 302–311, 2018.
R. E. Pranata, S. P. Sinaga, and A. Wanto, “Estimasi Wisatawan Mancanegara Yang Datang ke Sumatera Utara Menggunakan Jaringan Saraf,” Jurnal semanTIK, vol. 4, no. 1, pp. 97–102, 2018.
A. Wanto, “Prediksi Produktivitas Jagung Di Indonesia Sebagai Upaya Antisipasi Impor Menggunakan Jaringan Saraf Tiruan Backpropagation,” SINTECH (Science and Information Technology) Journal, vol. 2, no. 1, pp. 53–62, 2019.
I. S. Purba et al., “Accuracy Level of Backpropagation Algorithm to Predict Livestock Population of Simalungun Regency in Indonesia,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.
A. Wanto and E. Kurniawan, “Seleksi Penerimaan Asisten Laboratorium Menggunakan Algoritma AHP Pada AMIK-STIKOM Tunas Bangsa Pematangsiantar,” Jurnal Informatika dan Komputer (JIKO), vol. 3, no. 1, pp. 11–18, 2018.
A. Wanto and H. Damanik, “Analisis Penerapan Sistem Pendukung Keputusan Terhadap Seleksi Penerima Beasiswa BBM (Bantuan Belajar Mahasiswa) Pada Perguruan Tinggi Menggunakan Metode Simple Additive Weighting (SAW) (Studi Kasus : AMIK Tunas Bangsa Pematangsiantar),” in Prosiding Seminar Nasional Rekayasa (SNTR) II, 2015, no. 2, pp. 323–333.
M. Widyasuti, A. Wanto, D. Hartama, and E. Purwanto, “Rekomendasi Penjualan Aksesoris Handphone Menggunakan Metode Analitycal Hierarchy Process (AHP),” Konferensi Nasional Teknologi Informasi dan Komputer (KOMIK), vol. I, no. 1, pp. 27–32, 2017.
R. Watrianthos, W. A. Ritonga, A. Rengganis, A. Wanto, and M. Isa Indrawan, “Implementation of PROMETHEE-GAIA Method for Lecturer Performance Evaluation,” Journal of Physics: Conference Series, vol. 1933, no. 1, p. 012067, 2021.
S. R. Ningsih, D. Hartama, A. Wanto, I. Parlina, and Solikhun, “Penerapan Sistem Pendukung Keputusan Pada Pemilihan Objek Wisata di Simalungun,” in Seminar Nasional Teknologi Komputer & Sains (SAINTEKS), 2019, pp. 731–735.
D. N. Batubara, A. Padillah, Chairunnisa, A. Wanto, and Saifullah, “Penerapan Metode VIKOR Untuk Menentukan Susu Lansia Terbaik,” in Seminar Nasional Sains dan Teknologi Informasi (SENSASI), 2021, pp. 586–591.
F. Fania, M. Azzahra, D. Hartama, A. Wanto, and A. Rahim, “Rekomendasi Pemilihan Calon Peserta MTQ Terbaik Tahun 2019 dengan Teknik Additive Ratio Assessment (ARAS),” in Seminar Nasional Sains dan Teknologi Informasi (SENSASI), 2021, pp. 608–612.
A. Wulandari, R. P. Saragih, Maslina Manurung, A. Wanto, and rfan S. Damanik, “Sistem Pendukung Keputusan pada Pemilihan Masker Wajah Facial mask Berdasarkan Konsumen dengan Metode Analytical Hierarchy Process,” in Seminar Nasional Ilmu Sosial dan Teknologi (SANISTEK), 2021, pp. 197–201.
M. A. Amri, D. Hartama, A. Wanto, Sumarno, and H. S. Tambunan, “Penerapan Metode Fuzzy Mamdani dalam Penentuan Penerima BLT-DD di Mekar Sari Raya,” KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), vol. 4, no. 1, pp. 269–277, 2020.
Muttaqin et al., Biometrika: Teknologi Identifikasi. 2020.
R. D. Dana, A. R. Dikananda, D. Sudrajat, A. Wanto, and F. Fasya, “Measurement of health service performance through machine learning using clustering techniques,” Journal of Physics: Conference Series, vol. 1360, no. 1, pp. 1–6, 2019.
Y. Andriani, A. Wanto, and H. Handrizal, “Jaringan Saraf Tiruan dalam Memprediksi Produksi Kelapa Sawit di PT. KRE Menggunakan Algoritma Levenberg Marquardt,” Prosiding Seminar Nasional Riset Information Science (SENARIS), vol. 1, no. September, pp. 249–259, 2019.
I. C. Saragih, D. Hartama, and A. Wanto, “Prediksi Perkembangan Jumlah Pelanggan Listrik Menurut Pelanggan Area Menggunakan Algoritma Backpropagation,” Building of Informatics, Technology and Science (BITS), vol. 2, no. 1, pp. 48–54, 2020.
A. Wanto, S. D. Rizki, S. Andini, S. Surmayanti, N. L. W. S. R. Ginantra, and H. Aspan, “Combination of Sobel+Prewitt Edge Detection Method with Roberts+Canny on Passion Flower Image Identification,” Journal of Physics: Conference Series, vol. 1933, no. 1, pp. 1–8, 2021.
M. Syafiq, D. Hartama, I. O. Kirana, I. Gunawan, and A. Wanto, “Prediksi Jumlah Penjualan Produk di PT Ramayana Pematangsiantar Menggunakan Metode JST Backpropagation,” JURIKOM (Jurnal Riset Komputer), vol. 7, no. 1, p. 175, 2020.
M. Situmorang, A. Wanto, and Z. M. Nasution, “Architectural Model of Backpropagation ANN for Prediction of Population-Based on Sub-Districts in Pematangsiantar City,” International Journal of Information System & Technology, vol. 3, no. 1, pp. 98–106, 2019.
A. Wanto et al., “Forecasting the Export and Import Volume of Crude Oil, Oil Products and Gas Using ANN,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.
P. Parulian et al., “Analysis of Sequential Order Incremental Methods in Predicting the Number of Victims Affected by Disasters,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.
A. Wanto et al., “Analysis of Standard Gradient Descent with GD Momentum And Adaptive LR for SPR Prediction,” 2018, pp. 1–9.
N. A. Febriyati, A. D. GS, and A. Wanto, “GRDP Growth Rate Clustering in Surabaya City uses the K- Means Algorithm,” International Journal of Information System & Technology, vol. 3, no. 2, pp. 276–283, 2020.
M. A. Hanafiah and A. Wanto, “Implementation of Data Mining Algorithms for Grouping Poverty Lines by District/City in North Sumatra,” International Journal of Information System & Technology, vol. 3, no. 2, pp. 315–322, 2020.
A. Pradipta, D. Hartama, A. Wanto, S. Saifullah, and J. Jalaluddin, “The Application of Data Mining in Determining Timely Graduation Using the C45 Algorithm,” IJISTECH (International Journal of Information System & Technology), vol. 3, no. 1, pp. 31–36, 2019.
N. Arminarahmah, A. D. GS, G. W. Bhawika, M. P. Dewi, and A. Wanto, “Mapping the Spread of Covid-19 in Asia Using Data Mining X-Means Algorithms,” IOP Conference Series: Materials Science and Engineering, vol. 1071, no. 1, pp. 1–7, 2021.
T. H. Sinaga, A. Wanto, I. Gunawan, S. Sumarno, and Z. M. Nasution, “Implementation of Data Mining Using C4.5 Algorithm on Customer Satisfaction in Tirta Lihou PDAM,” Journal of Computer Networks, Architecture, and High-Performance Computing, vol. 3, no. 1, pp. 9–20, 2021.
I. I. P. Damanik, S. Solikhun, I. S. Saragih, I. Parlina, D. Suhendro, and A. Wanto, “Algoritma K-Medoids untuk Mengelompokkan Desa yang Memiliki Fasilitas Sekolah di Indonesia,” in Prosiding Seminar Nasional Riset Information Science (SENARIS), 2019, vol. 1, no. September, pp. 520–527.
F. S. Napitupulu, I. S. Damanik, I. S. Saragih, and A. Wanto, “Algoritma K-Means untuk Pengelompokkan Dokumen Akta Kelahiran pada Tiap Kecamatan di Kabupaten Simalungun,” Building of Informatics, Technology and Science (BITS) Volume, vol. 2, no. 1, pp. 55–63, 2020.
S. Sintia, P. Poningsih, I. S. Saragih, A. Wanto, and I. S. Damanik, “Penerapan Algoritma Apriori Dalam Memprediksi Hasil Penjualan Sparepart PC (Studi Kasus : Toko Sentra Computer),” in Prosiding Seminar Nasional Riset Information Science (SENARIS), 2019, vol. 1, pp. 910–917.
S. F. Damanik, A. Wanto, and I. Gunawan, “Penerapan Algoritma Decision Tree C4.5 untuk Klasifikasi Tingkat Kesejahteraan Keluarga pada Desa Tiga Dolok,” Jurnal Krisnadana Volume, vol. 1, no. 2, pp. 21–32, 2022.
H. J. Damanik, E. Irawan, I. S. Damanik, and A. Wanto, “Penerapan Algoritma Naive Bayes untuk Penentuan Resiko Kredit Kepemilikan Kendaraan Bermotor,” in Prosiding Seminar Nasional Riset Information Science (SENARIS), 2019, vol. 1, pp. 501–511.
S. Herdyansyah, E. H. Hermaliani, L. Kurniawati, and S. R. Sri Rahayu, “Analisa Metode Association Rule Menggunakan Algoritma FP-Growth Terhadap Data Penjualan (Study Kasus Toko Berkah),” Jurnal Khatulistiwa Informatika, vol. 8, no. 2, pp. 127–133, 2020.
D. Hartama, A. Perdana Windarto, and A. Wanto, “The Application of Data Mining in Determining Patterns of Interest of High School Graduates,” Journal of Physics: Conference Series, vol. 1339, no. 1, pp. 1–6, 2019.
M. Widyastuti, A. G. Fepdiani Simanjuntak, D. Hartama, A. P. Windarto, and A. Wanto, “Classification Model C.45 on Determining the Quality of Custumer Service in Bank BTN Pematangsiantar Branch,” in Journal of Physics: Conference Series, 2019, vol. 1255, no. 1.
A. Wanto et al., Data Mining : Algoritma dan Implementasi. Medan: Yayasan Kita Menulis, 2020.
S. Suhada, D. Ratag, G. Gunawan, D. Wintana, and T. Hidayatulloh, “Penerapan Algoritma FP-Growth Untuk Menentukan Pola Pembelian Konsumen Pada Ahass Cibadak,” Swabumi, vol. 8, no. 2, pp. 118–126, 2020.
S. Adibya, P. Putra, P. Kasih, and J. Sahertian, “Implementasi Pola Penjualan Barang di Minimarket Menggunakkan Metode Apriori,” pp. 181–186, 2019.
Alfiqra and F. Y. Alfizi, “PENERAPAN MARKET BASKET ANALYSIS MENGGUNAKAN PROSES KDD (KNOWLEDGE DISCOVERY IN DATABASE) SEBAGAI STRATEGI PENJUALAN PRODUK SWALAYAN (STUDI KASUS : SWALAYAN X) Alfiqra,” pp. 509–516, 2018.
D. Romdon and I. Kholil, “Implementasi Data Mining dengan Metode Apriori Dalam Menentukan Pola Pemilihan Pemeriksaan Kimia,” TIN: Terapan Informatika Nusantara, vol. 2, no. 10, pp. 642–651, 2022.
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2022 Ayu Padillah, Heru Satria Tambunan, Rizki Alfadillah Nasution

Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2022 The authors. Published by Yayasan Literasi Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
The author(s) whose article is published in the JOMLAI journal attain the copyright for their article and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. By submitting the manuscript to JOMLAI, the author(s) agree with this policy. No special document approval is required.
The author(s) guarantee that:their article is original, written by the mentioned author(s),
- has never been published before,
- does not contain statements that violate the law, and
- does not violate the rights of others, is subject to copyright held exclusively by the author(s), and is free from the rights of third parties, and that the necessary written permission to quote from other sources has been obtained by the author(s).
The author(s) retain all rights to the published work, such as (but not limited to) the following rights:
- Copyright and other proprietary rights related to the article, such as patents,
- The right to use the substance of the article in its own future works, including lectures and books,
- The right to reproduce the article for its own purposes,
- The right to archive all versions of the article in any repository, and
- The right to enter into separate additional contractual arrangements for the non-exclusive distribution of published versions of the article (for example, posting them to institutional repositories or publishing them in a book), acknowledging its initial publication in this journal (JOMLAI: Journal of Machine Learning and Artificial Intelligence).
Suppose the article was prepared jointly by more than one author. Each author submitting the manuscript warrants that all co-authors have given their permission to agree to copyright and license notices (agreements) on their behalf and notify co-authors of the terms of this policy. JOMLAI will not be held responsible for anything that may arise because of the writer's internal dispute. JOMLAI will only communicate with correspondence authors.
Authors should also understand that their articles (and any additional files, including data sets, and analysis/computation data) will become publicly available once published. The license of published articles (and additional data) will be governed by a Creative Commons Attribution-ShareAlike 4.0 International License. JOMLAI allows users to copy, distribute, display and perform work under license. Users need to attribute the author(s) and JOMLAI to distribute works in journals and other publication media. Unless otherwise stated, the author(s) is a public entity as soon as the article is published



















