Comparison of Borda and NRF (Normalized Rating Frequency) in Recommender System

Penulis

  • Taufiq Abidin Politeknik Harapan Bersama, Tegal, Indonesia
  • Slamet Wiyono Politeknik Harapan Bersama, Tegal, Indonesia

DOI:

https://doi.org/10.55123/jomlai.v1i3.1026

Kata Kunci:

Borda, NRF, Recommender System, Comparison

Abstrak

The Collaborative Filtering  method is a popular method in making recommender systems. Although CF is a popular method, it has major problems, namely cold start and sparsity . Several studies have been conducted to treat cold starts and sparsity. One way to overcome cold start and sparsity is the Borda calculation method. Research using the Borda method has been carried out a lot but has not utilized the rating optimally. The NRF method is a new method offered to maximize the use of ratings. By using dummy test data, the NRF method is more effective than Borda in calculating recommendation scores.

Referensi

S. Lestari, T. B. Adji, and A. E. Permanasari, “Performance Comparison of Rank Aggregation Using Borda and Copeland in Recommender System,” 2018 Int. Work. Big Data Inf. Secur., pp. 69–74, 2018.

H. T. Hidayat and N. G. A. P. H. Saptarini, “Sistem Pendukung Keputusan Pemilihan Maskapai Terbaik Pada Rute Domestik Dengan Menggunakan Metode Multi Factor Evaluation Process (MFEP),” MATRIX, vol. 4, no. 3, 2014.

P. I. Ciptayani and N. G. A. P. H. Saptarini, “Sistem Pendukung Keputusan Pemilihan Manajer Proyek Menggunakan Analytical Hierarchy Process,” MATRIX, vol. 4, no. 2, 2014.

S. K. Gorakala and M. Usuelli, Building a Recommnebder System with R. Birmingham-Mumbai: Packt Publishing Ltd., 2015.

S. Natarajan, S. Vairavasundaram, S. Natarajan, and A. H. Gandomi, “Resolving Data Sparsity and Cold Start Problem in Collaborative Filtering Recommender System Using Linked Open Data,” Expert Syst. Appl., 2020.

A. S. Girsang, B. AL Faruq, H. R. Herlianto, and S. Simbolon, “Collaborative Recommendation System in Users of Anime Films,” in Journal of Physics: Conference Series, 2020, pp. 1–7.

R. Hidayat, “Membangun Sistem Rekomendasi Berbasis Algoritma Apriori Pada Website Penjualan UD Rahmat,” STMIK Widya Cipta Dharma, 2019.

W. A. Prakoso, “Pembangunan Sistem Rekomendasi Dalam Strategi Bisnis Umkm Berdasarkan Lokasi Di Kota Bandung Pada Platform Android,” Universitas Komputer Indonesia, 2019.

A. Wiyanto, “Sistem Rekomendasi Kuliner Dengan Menggunakan Metode K-Means Untuk Mendukung Strategi Penjualan Makanan,” Universitas Pembangunan Nasional Veteran Jakarta, 2019.

N. P. Sari, C. A. Putra, and F. Muttaqin, “Rancang Bangun Sistem Rekomendasi Pencarian Produk Properti Dengan Menggunakan Metode Association Rule Di PT.Brighton,” J. Inform. dan Sist. Inf., vol. 01, no. 1, 2020.

K. R. Sari, W. Suharso, and Y. Azhar, “Pembuatan Sistem Rekomendasi Film dengan Menggunakan Metode Item Based Collaborative Filtering pada Apache Mahout,” REPOSITOR, vol. 2, no. 6, 2020.

P. Nastiti, “Penerapan Metode Content Based Filtering Dalam Implementasi Sistem Rekomendasi Tanaman Pangan,” TEKNIKA, vol. 8, no. 1, 2019.

A. S. Guntara, “Implementasi Metode Naïve Bayes pada Sistem Rekomendasi Pembelian Mobil pada PT. Honda Prospect Motor,” REMIK, vol. 4, no. 1, 2019.

I. T. Sevandri, R. K. Dewi, and M. T. Ananta, “Implementasi Algoritma Topsis Pada Sistem Rekomendasi Pencarian Lokasi Gym Berbasis Android (Studi Kasus: Kota Malang),” JPTIIK, vol. 3, no. 4, 2019.

T. W. Harjanti and L. Lipindi, “Rancang Bangun Sistem Rekomendasi BIrotravel pada Fitur Custom Trip untuk Aplikasi Travel Vaithme Menggunakan Algoritma Weighted Product Berbasis Android,” in SEMNASTEK 2019, 2019.

S. Wiyono and T. Abidin, “COMPARATIVE STUDY OF MACHINE LEARNING KNN , SVM , AND DECISION TREE ALGORITHM TO PREDICT STUDENT ’ S PERFORMANCE,” IJRG, vol. 7, no. January, pp. 190–196, 2019.

maryam K. Najafabadi, A. Mohamed, and C. W. Onn, “An impact of time and item influencer in collaborative filtering recommendations using graph-based model,” Inf. Process. Manag., vol. 56, no. 3, pp. 526–540, 2019.

B. Lika, K. Kolomvatsos, and S. Hadjiefthymiades, “Expert Systems with Applications Facing the cold start problem in recommender systems,” Expert Syst. Appl., vol. 41, no. 4, pp. 2065–2073, 2014.

L. Uyangoda, S. Ahangama, and T. Ranasinghe, “User Profile Feature-Based Approach to Address the Cold Start Problem in Collaborative Filtering for Personalized Movie Recommendation,” in Thirteenth International Conference on Digital Information Management (ICDIM), 2018, pp. 24–28.

Y. Tang and Q. Tong, “BordaRank : A Ranking Aggregation Based Approach to Collaborative Filtering,” in International Conference on Computer and Information Science (ICIS), 2016, pp. 1–6.

G. Al-sharrah, “Ranking Using the Copeland Score : A Comparison with the Hasse Diagram,” J. Chem. Inf. Model., pp. 785–791, 2010.

S. Lestari, T. B. Adji, and A. E. Permanasari, “NRF : Normalized Rating Frequency for Collaborative Filtering Paper,” in International Conference on Applied Information Technology and Innovation (ICAITI), 2018, pp. 19–25.

Diterbitkan

2022-10-18

Cara Mengutip

Abidin, T., & Wiyono, S. (2022). Comparison of Borda and NRF (Normalized Rating Frequency) in Recommender System. JOMLAI: Journal of Machine Learning and Artificial Intelligence, 1(3), 215–218. https://doi.org/10.55123/jomlai.v1i3.1026

Terbitan

Bagian

Articles