Diagnosis of Gastric Disease Based on Artificial Neural Network with Hebb Rule Algorithm

Authors

  • Victor Asido Elyakim P STIKOM Tunas Bangsa Pematangsiantar
  • Alyah Octafia STIKOM Tunas Bangsa Pematangsiantar
  • Yemima Pepayosa Sembiring STIKOM Tunas Bangsa Pematangsiantar
  • Dony Jordan Pangomoan Sirait STIKOM Tunas Bangsa Pematangsiantar
  • Angga Priandi STIKOM Tunas Bangsa Pematangsiantar

DOI:

https://doi.org/10.55123/jomlai.v4i3.6543

Keywords:

Health , Gastric Disease , Hebb Rule , Diagnosis , Artificial Neural Network

Abstract

Gastric disorders are among the most common health problems faced by society, often caused by irregular eating habits, unhealthy lifestyles, and high stress levels. The symptoms are diverse, ranging from abdominal pain and nausea to weight loss, making accurate and timely diagnosis essential to prevent more serious complications. This study aims to develop a diagnostic system for gastric diseases using Artificial Neural Networks (ANN) with the Hebb Rule algorithm, a learning principle that strengthens the connections between neurons when they are activated simultaneously. The research utilized binary-encoded data consisting of ten types of gastric diseases and twenty associated symptoms to establish patterns of correlation between symptoms and diagnoses. The results demonstrate that the system successfully recognized all test data with outcomes consistent with the expected targets, proving that the Hebb Rule is effective in mapping symptom-disease relationships even when applied to simple binary data. These findings highlight the practicality and efficiency of the Hebb Rule in building an intelligent diagnostic framework, while also showing its potential for further development with more complex datasets, such as symptom severity levels or laboratory test results. Ultimately, this research contributes to the advancement of smart medical systems that can support both healthcare professionals and the general public in performing early detection of gastric diseases quickly, accurately, and effectively.

References

F. Yanti et al., “PERBANDINGAN SAHAM HANG SENG DAN NIKKEI MENGGUNAKAN,” pp. 7–13.

G. E. R. A. L. D. Tesauro, “Building Network Learning Algorithms from Hebbian Synapses,” vol. 355, no. 1 989, pp. 338–355, 1989.

T. Szandała, “Comparison of Different Learning Algorithms for Pattern Recognition with Hopfield ’ s Neural Network,” Procedia - Procedia Comput. Sci., vol. 71, pp. 68–75, 2015, doi: 10.1016/j.procs.2015.12.205.

P. Studi, T. Informatika, F. Teknologi, U. Kristen, and D. Wacana, “Sistem pengenalan huruf dalam bahasa isyarat tangan menggunakan metode hebb rule,” 2015.

S. P. Sipayung, D. El, and R. Purba, “Jaringan Syaraf Tiruan Menggunakan Algoritma Hebb Pada Penyakit Gigi dan Mulut,” vol. 1, no. 2, pp. 328–346, 2024.

S. N. Rizki and Y. Mardiansyah, “The Vocal Patterns Recognition In Artificial Neural Network By Using The Hebb Rule Algorithm,” vol. 5, no. 158, pp. 767–774, 2022.

Y. F. Purba, G. A. Simbolon, and S. P. Sipayung, “Diagnosa Penyakit Kulit dengan Algoritma Hebb Rule Jaringan Saraf Tiruan,” vol. 1, no. 2, pp. 456–464, 2024.

A. Pasaribu et al., “Penerapan Aturan Hebb dalam Identifikasi dan Pengobatan Kolik Abdomen pada Pasien Dewasa : Pendekatan Algoritma yang Efektif,” vol. 1, no. 2, pp. 465–472, 2024.

T. Matius, S. Mulyana, T. Informatika, and U. Bunda, “SEGMENTASI CITRA MENGGUNAKAN HEBB-RULE,” vol. 11, pp. 34–43, 2015.

T. Matius and S. Mulyana, “Perbandingan Hebb-Rule Dan Perceptron Dalam Segmentasi Citra Menggunakan Input Variasi RGB,” vol. 11, pp. 30–39, 2015.

E. Marlina, C. Susanto, D. Dewisti, and R. Bura, “Analisa Gaya Belajar Anak Dan Kepribadian Dengan Metode Jaringan Syaraf Tiruan Hebb Rule Analysis Of Children ’ s Learning Styles And Personality Using The Hebb Rule Artificial Neural Network Method,” vol. 14, no. 1, pp. 81–91, 2024.

N. Kristianti, “Penggunaan algoritma hebb dalam pola pengenalan huruf,” vol. 18, no. 1, pp. 52–60, 2024.

A. Kannappan, A. Tamilarasi, and E. I. Papageorgiou, “Author ’ s personal copy Analyzing the performance of fuzzy cognitive maps with non-linear hebbian learning algorithm in predicting autistic disorder”, doi: 10.1016/j.eswa.2010.06.069.

M. Informatika, K. Solok, and S. Barat, “Pemanfaatan Algoritma Pembelajaran Pola Karakter Menggunakan Metode Hebb Rule,” vol. 8, no. 2, 2023.

F. Heylighen and J. Bollen, “Hebbian Algorithms for a Digital Library Recommendation System”.

Y. Eninggar et al., “BERBASIS JARINGAN SYARAF TIRUAN,” pp. 1–5.

I. Engineering et al., “Jaringan syaraf tiruan menggunakan algoritma hebb rule untuk diagnosa penyakit kulit manusia,” vol. 6, no. 2, pp. 78–87, 2022.

J. Control, M. R. Khalghani, M. A. Shamsi-nejad, A. Prof, M. Farshad, and M. H. Khooban, “Modifying Power Quality ’ s Indices of Load by Presenting an Adaptive Method based on Hebb Learning Algorithm for Controlling DVR Modifying Power Quality ’ s Indices of Load by Presenting an Adaptive Method based on Hebb Learning Algorithm for Controlling,” vol. 1144, 2017, doi: 10.7305/automatika.2014.06.364.

N. Chaturvedi and P. Kumar, “Optimization of giving employee craft assessment using artificial neural network with Hebb algorithm”, doi: 10.1088/1757-899X/725/1/012111.

T. H. Brown and C. L. Keenan, “HEBBIAN SYNAPSES : Biophysical Mechanisms and Algorithms,” pp. 475–511, 1990.

“HEBBNET : A SIMPLIFIED HEBBIAN LEARNING FRAMEWORK TO DO BIOLOGICALLY PLAUSIBLE LEARNING Institute for Infocomm Research ( I 2 R ), A * STAR , Singapore Artificial Intelligence , Analytics And Informatics ( AI 3 ), A * STAR , Singapore if t = 1 otherwise,” no. 1, pp. 1–5.

Downloads

Published

2025-09-15

How to Cite

Victor Asido Elyakim P, Alyah Octafia, Yemima Pepayosa Sembiring, Dony Jordan Pangomoan Sirait, & Angga Priandi. (2025). Diagnosis of Gastric Disease Based on Artificial Neural Network with Hebb Rule Algorithm. JOMLAI: Journal of Machine Learning and Artificial Intelligence, 4(3), 137–148. https://doi.org/10.55123/jomlai.v4i3.6543