Public Sentiment Analysis of the Agrarian Conflict between PT TPL and the Toba Simalungun Indigenous Community Using the SVM Method
DOI:
https://doi.org/10.55123/jomlai.v4i3.6116Keywords:
Sentiment Analysis, Agrarian, Tiktok , Support Vector Machine, TF-IDFAbstract
The agrarian conflict between PT Toba Pulp Lestari and the Toba Simalungun indigenous community has generated diverse public opinions on social media. This study aims to analyze public sentiment regarding the conflict using the Support Vector Machine (SVM) method based on TikTok comment data. A total of 1,751 comments were collected via the TikTok API and processed through cleaning, normalization, stopword removal, and stemming. Sentiment labeling was performed automatically with a lexical-based approach, followed by feature weighting using Term Frequency-Inverse Document Frequency (TF-IDF). The SVM model was used to classify public sentiment into two main categories, namely positive and negative. The results of the testing showed that the SVM model was able to achieve an accuracy of 80%, with excellent performance in detecting negative sentiment. Additional analysis through wordcloud visualization shows the dominant words in each sentiment category, which reinforces the model's classification results. The findingsof this study provide an objective picture of public opinion patterns on social media, while also demonstrating the potential application of machine learning-based sentiment analysis methods to understand public perceptions of other social issues in the future.
References
A. Alfian, K. Kudussisara, N. S. Maimunah, and I. Susana, “Masyarakat Adat dan Toba PULP Lestari: Pemetaan Aktor dan Analisis Konflik Agraria,” Aceh Anthropological Journal, vol. 9, no. 1, pp. 53–69, May 2025, doi: 10.29103/aaj.v9i1.20332.
F. Tobing, “SENGKETA TANAH ANTARA MASYARAKAT ADAT BATAK DENGAN PT. TOBA PULP LESTARI DAN PELANGGARAN PERBUATAN-PERBUATAN YANG MENCIDERAI ATURAN KEHUTANAN DI WILAYAH SUMATERA UTARA,” Jurnal Ilmu Hukum Sui Generis, vol. 2, no. 2, pp. 77–81, 2022, doi: 10.23887/jih.v2i2.1014.
N. Norlaila, W. W. Winarno, and E. T. Luthfi, “Analisis Sentimen Masyarakat Tentang Tambang Di Indonesia Pada Twitter Menggunakan Data Mining,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 9, no. 3, pp. 1091–1099, Aug. 2024, doi: 10.29100/jipi.v9i3.5402.
R. Darman, “ANALISIS SENTIMEN RESPONS TWITTER TERHADAP PERSYARATAN BADAN PENYELENGGARA JAMINAN SOSIAL (BPJS) DI KANTOR PERTANAHAN,” JURNAL WIDYA BHUMI, vol. 3, pp. 113–136, 2023, doi: 10.31292/wb.v3i2.61.
D. Ratna Rohmania and R. Abidin, “LogicLink : Journal of Artificial Intelligence and Multimedia in Informatics Analisis Sentimen Masyarakat Indonesia Terhadap Kebijakan Program Tapera Menggunakan Brand24,” LogicLink : Journal of Artificial Intelligence and Multimedia in Informatics, vol. 1, no. 2, pp. 120–131, 2024, doi: 10.28918/logiclink.v1i2.8736.
A. P. Putra and A. F. Syafira, “Analisis Sentimen Data Twitter Topik Politik Dengan Metode Naive Bayes Dan Convolutional Neural Networks (Cnn),” Jurnal Ilmiah Wahana Pendidikan, Oktober, vol. 9, no. 20, pp. 36–41, 2023, doi: 10.5281/zenodo.8396579.
K. X. Han, W. Chien, C. C. Chiu, and Y. T. Cheng, “Application of support vector machine (SVM) in the sentiment analysis of twitter dataset,” Applied Sciences (Switzerland), vol. 10, no. 3, Feb. 2020, doi: 10.3390/app10031125.
F. Es-sabery, I. Es-sabery, J. Qadir, B. Sainz-de-Abajo, and B. Garcia-Zapirain, “A hybrid Hadoop-based sentiment analysis classifier for tweets associated with COVID-19 utilizing two machine learning algorithms: CNN, and fuzzy C4.5,” J Big Data, vol. 11, no. 1, Dec. 2024, doi: 10.1186/s40537-024-01014-4.
I. M. Parapat, M. T. Furqon, and Sutrisno, “Penerapan Metode Support Vector Machine (SVM) Pada Klasifikasi Penyimpangan Tumbuh Kembang Anak,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 10, pp. 3163–3169, 2018.
M. Muchtar and R. A. Muchtar, “PERBANDINGAN METODE KNN DAN SVM DALAM KLASIFIKASI KEMATANGAN BUAH MANGGA BERDASARKAN CITRA HSV DAN FITUR STATISTIK,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 2, Apr. 2024, doi: 10.23960/jitet.v12i2.4010.
F. C. Onwuegbuche, J. M. Wafula, and J. K. Mung’atu, “Support Vector Machine for Sentiment Analysis of Nigerian Banks Financial Tweets,” Journal of Data Analysis and Information Processing, vol. 07, no. 04, pp. 153–173, 2019, doi: 10.4236/jdaip.2019.74010.
N. Hendrastuty, A. Rahman Isnain, and A. Yanti Rahmadhani, “Analisis Sentimen Masyarakat Terhadap Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine,” Jurnal Informatika: Jurnal pengembangan IT (JPIT), vol. 6, no. 3, pp. 150–55, 2021, doi: 10.30591/jpit.v6i3.2870.
M. R. Fahlevvi, “Analisis Sentimen Terhadap Ulasan Aplikasi Pejabat Pengelola Informasi dan Dokumentasi Kementerian Dalam Negeri Republik Indonesia di Google Playstore Menggunakan Metode Support Vector Machine,” Jurnal Teknologi dan Komunikasi Pemerintahan, vol. 4, no. 1, pp. 1–13, 2022, [Online]. Available: http://ejournal.ipdn.ac.id/JTKP,
V. Fitriyana et al., “Analisis Sentimen Ulasan Aplikasi Jamsostek Mobile Menggunakan Metode Support Vector Machine,” 2023.
S. D. Simamora, F. Irwiensyah, and F. N. Hasan, “Analisis Sentimen Terkait Konflik Palestina-Israel Pada Media Sosial X Menggunakan Algoritma Naïve Bayes Classifier,” Building of Informatics, Technology and Science (BITS), vol. 6, no. 1, Jun. 2024, doi: 10.47065/bits.v6i1.5344.
M. Dehghani and Z. Yazdanparast, “Political Sentiment Analysis of Persian Tweets Using CNN-LSTM Model,” 2023. doi: 10.48550/arXiv.2307.07740.
G. Z. Rahma and M. Rosyda, “Perbandingan Kinerja Algoritma Convolutional Neural Network (CNN) dan Recurrent Neural Network (RNN) pada Analisis Sentimen Pemilu Presiden 2024,” Jurnal Pendidikan dan Teknologi Indonesia, vol. 5, no. 2, Feb. 2025, doi: 10.52436/1.jpti.652.
M. Hadi Arfian et al., “Analisis Sentimen Pada Media Sosial Menggunakan Metode Support Vector Machine,” Jurnal Ilmu Teknik dan Komputer, vol. 09, no. 01, pp. 1–6, 2025, doi: 10.22441/jitkom.v9i1.001.
A. Liawati, R. Narasati, D. Solihudin, C. Lukman Rohmat, and S. Eka Permana, “ANALISIS SENTIMEN KOMENTAR POLITIK DI MEDIA SOSIAL X DENGAN PENDEKATAAN DEEP LEARNING,” 2023.
Z. Alhaq, A. Mustopa, S. Mulyatun, and J. D. Santoso, “PENERAPAN METODE SUPPORT VECTOR MACHINE UNTUK ANALISIS SENTIMEN PENGGUNA TWITTER,” JOISM : JURNAL OF INFORMATION SYSTEM MANAGEMENT, vol. 3, no. 1, pp. 16–1, 2021, doi: 10.24076/joism.2021v3i2.558.
M. Rahardi, A. Aminuddin, F. F. Abdulloh, and R. A. Nugroho, “Sentiment Analysis of Covid-19 Vaccination using Support Vector Machine in Indonesia,” (IJACSA) International Journal of Advanced Computer Science and Applications, vol. 13, no. 6, pp. 534–539, 2022, doi: 10.14569/IJACSA.2022.0130665.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Dian Yusri Andira, Deswita Maharani Harahap, Vibiola Br Damanik, Indah Frian Sari, Victor Asido Elyakim P

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2022 The authors. Published by Yayasan Literasi Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
The author(s) whose article is published in the JOMLAI journal attain the copyright for their article and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. By submitting the manuscript to JOMLAI, the author(s) agree with this policy. No special document approval is required.
The author(s) guarantee that:their article is original, written by the mentioned author(s),
- has never been published before,
- does not contain statements that violate the law, and
- does not violate the rights of others, is subject to copyright held exclusively by the author(s), and is free from the rights of third parties, and that the necessary written permission to quote from other sources has been obtained by the author(s).
The author(s) retain all rights to the published work, such as (but not limited to) the following rights:
- Copyright and other proprietary rights related to the article, such as patents,
- The right to use the substance of the article in its own future works, including lectures and books,
- The right to reproduce the article for its own purposes,
- The right to archive all versions of the article in any repository, and
- The right to enter into separate additional contractual arrangements for the non-exclusive distribution of published versions of the article (for example, posting them to institutional repositories or publishing them in a book), acknowledging its initial publication in this journal (JOMLAI: Journal of Machine Learning and Artificial Intelligence).
Suppose the article was prepared jointly by more than one author. Each author submitting the manuscript warrants that all co-authors have given their permission to agree to copyright and license notices (agreements) on their behalf and notify co-authors of the terms of this policy. JOMLAI will not be held responsible for anything that may arise because of the writer's internal dispute. JOMLAI will only communicate with correspondence authors.
Authors should also understand that their articles (and any additional files, including data sets, and analysis/computation data) will become publicly available once published. The license of published articles (and additional data) will be governed by a Creative Commons Attribution-ShareAlike 4.0 International License. JOMLAI allows users to copy, distribute, display and perform work under license. Users need to attribute the author(s) and JOMLAI to distribute works in journals and other publication media. Unless otherwise stated, the author(s) is a public entity as soon as the article is published



















