Application of Artificial Neural Networks in Predicting Salt Imports by Country of Origin Using the Back-propagation Method

Authors

  • Sari Marito Tondang STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Heru Satria Tambunan STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Susiani Susiani STIKOM Tunas Bangsa, Pematangsiantar, Indonesia

DOI:

https://doi.org/10.55123/jomlai.v1i3.919

Keywords:

Prediction, Import, Salt, Back-propagation, Country of Origin

Abstract

Salt is a basic consumption material needed by the community and various industries. Indonesia is a country that has many beaches that have great potential as a source of salt production. But Indonesia is still dependent on imports so that industrial imports continue to increase, can directly or indirectly affect the risk of the country’s economic pattern. An increase in salt imports although there was also a decrease but only slightly and did not last long from several countries from 2010-2020 recorded in the Central Statistics Agency (BPS). In this study, the author will predict the import of salt for the next 3 years using the Back-propagation algorithm. Back-propagation is one of the artificial neural network methods that is quite reliable in solving problems where the network tries to achieve stability again to achieve the expected output and there is a learning process by adjusting connection weights. This study uses 6 architectural models : 5-80-1, 5-90-1, 5-100-1, 5-110-1, from the four models the best architectural model is obtained namely 5-90-1 with an accuracy value of 75%, epoch 4265 iterations, and MSE Testing 0,01569.

References

O. T. R. Putri and T. Sugiarti, “Perkembangan dan Faktor yang Mempengaruhi Permintaan Volume Impor Garam di Indonesia,” Jurnal Ekonomi Pertanian dan Agribisnis (JEPA), vol. 5, no. 3, pp. 748–761, 2021.

R. Wulansarie, I. N. Pradnya, M. Kusumaningrum, I. Pratiwi, Y. A. Prabowo, and F. Amrulloh, “Jurnal dedikasi,” vol. 2, no. 1, pp. 64–72, 2021.

A. Hakim and A. Triyanti, “Model Empiris Impor Garam Indonesia Empirical Model of Indonesian Salt Imports,” vol. 11, no. 2, pp. 125–135, 2020.

T. Kurniawan and A. Azizi, “Dampak Kebijakan Impor Dan Kelembagaan Terhadap Kinerja Industri Garam Nasional,” Jurnal Kebijakan Sosial Ekonomi Kelautan dan Perikanan, vol. 3, no. 1, pp. 1–13, 2013.

I. S. Purba and A. Wanto, “Prediksi Jumlah Nilai Impor Sumatera Utara Menurut Negara Asal Menggunakan Algoritma Backpropagation,” Techno.Com, vol. 17, no. 3, 2018.

A. Triyono, A. J. Santoso, and Pranowo, “Penerapan Metode Jaringan Syaraf Tiruan Backpropagation Untuk Meramalkan Harga Saham (IHSG),” Jurnal Sistem Dan Informatika, vol. 11, no. 1, pp. 165–172, 2016.

A. S. Jamil, N. Tinaprilla, and Suharno, “IMPOR GARAM INDONESIA Determinant Factors of the Demand and Effectiveness of Indonesia ’ s Salt Import Policy PENDAHULUAN Garam komoditi sebagai salah satu ini lahan produksi di Madura tersebut menguasai lahan garam sekitar 5 . 130 2014 mencapai 330 . 000,” vol. 11, no. 1, pp. 43–68, 2017.

E. A. Saputri, “Prediksi Volume Impor Beras Nasional Menggunakan Jaringan Saraf Tiruan Metode ELM ( Extreme Learning Machine ),” vol. Im.

M. Y. Habibi and dan E. Riksakomara, “Peramalan Harga Garam Konsumsi Menggunakan Artificial Neural Network Feedforward-Backpropagation ( Studi Kasus :,” vol. 6, no. 2, 2017.

Y. R. Sari and M. Rani, “Penerapan Logika Fuzzy Metode Mamdani Dalam Menyelesaikan Masalah Produksi Garam Nasional 1,2,” vol. 8, no. 1, 2021.

Nurhayati, M. B. Sibuea, D. Kusbiantoro, M. Silaban, and A. Wanto, “Implementasi Algoritma Resilient untuk Prediksi Potensi Produksi Bawang Merah di Indonesia,” Building of Informatics, Technology and Science (BITS), vol. 4, no. 2, pp. 1051–1060, 2022.

I. M. Muhamad, S. A. Wardana, A. Wanto, and A. P. Windarto, “Algoritma Machine Learning untuk penentuan Model Prediksi Produksi Telur Ayam Petelur di Sumatera,” Journal of Informatics, Electrical and Electronics Engineering, vol. 1, no. 4, pp. 126–134, 2022.

M. Mahendra, R. C. Telaumbanua, A. Wanto, and A. P. Windarto, “Akurasi Prediksi Ekspor Tanaman Obat , Aromatik dan Rempah-Rempah Menggunakan Machine Learning,” KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 2, no. 6, pp. 207–215, 2022.

R. Puspadini, A. Wanto, and N. Arminarahmah, “Penerapan ML dengan Teknik Bayesian Regulation untuk Peramalan,” Journal of Computer System and Informatics (JoSYC), vol. 3, no. 3, pp. 147–155, 2022.

N. L. W. S. R. Ginantra, A. D. GS, S. Andini, and A. Wanto, “Pemanfaatan Algoritma Fletcher-Reeves untuk Penentuan Model Prediksi Harga Nilai Ekspor Menurut Golongan SITC,” Building of Informatics, Technology and Science (BITS), vol. 3, no. 4, pp. 679–685, 2022.

N. Arminarahmah, S. D. Rizki, O. A. Putra, U. Islam, K. Muhammad, and A. Al, “Performance Analysis and Model Determination for Forecasting Aluminum Imports Using the Powell-Beale Algorithm,” IJISTECH (International Journal of Information System & Technology), vol. 5, no. 5, pp. 624–632, 2022.

A. Wanto, S. Defit, and A. P. Windarto, “Algoritma Fungsi Perlatihan pada Machine Learning berbasis ANN untuk Peramalan Fenomena Bencana,” RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 2, pp. 254–264, 2021.

R. Sinaga, M. M. Sitomorang, D. Setiawan, A. Wanto, and A. P. Windarto, “Akurasi Algoritma Fletcher-Reeves untuk Prediksi Ekspor Karet Remah Berdasarkan Negara Tujuan Utama,” Journal of Informatics Management and Information Technology, vol. 2, no. 3, pp. 91–99, 2022.

G. W. Bhawika et al., “Implementation of ANN for Predicting the Percentage of Illiteracy in Indonesia by Age Group,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.

A. Wanto et al., “Analysis of the Backpropagation Algorithm in Viewing Import Value Development Levels Based on Main Country of Origin,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.

E. Siregar, H. Mawengkang, E. B. Nababan, and A. Wanto, “Analysis of Backpropagation Method with Sigmoid Bipolar and Linear Function in Prediction of Population Growth,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.

M. K. Z. Sormin, P. Sihombing, A. Amalia, A. Wanto, D. Hartama, and D. M. Chan, “Predictions of World Population Life Expectancy Using Cyclical Order Weight / Bias,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.

A. Wanto et al., “Analysis of the Accuracy Batch Training Method in Viewing Indonesian Fisheries Cultivation Company Development,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.

Y. Andriani, H. Silitonga, and A. Wanto, “Analisis Jaringan Syaraf Tiruan untuk prediksi volume ekspor dan impor migas di Indonesia,” Register: Jurnal Ilmiah Teknologi Sistem Informasi, vol. 4, no. 1, pp. 30–40, 2018.

W. Saputra, J. T. Hardinata, and A. Wanto, “Implementation of Resilient Methods to Predict Open Unemployment in Indonesia According to Higher Education Completed,” JITE (Journal of Informatics and Telecommunication Engineering), vol. 3, no. 1, pp. 163–174, 2019.

N. L. W. S. R. Ginantra et al., “Performance One-step secant Training Method for Forecasting Cases,” Journal of Physics: Conference Series, vol. 1933, no. 1, pp. 1–8, 2021.

Downloads

Published

2022-10-18

How to Cite

Tondang, S. M., Tambunan, H. S., & Susiani, S. (2022). Application of Artificial Neural Networks in Predicting Salt Imports by Country of Origin Using the Back-propagation Method. JOMLAI: Journal of Machine Learning and Artificial Intelligence, 1(3), 245–250. https://doi.org/10.55123/jomlai.v1i3.919

Issue

Section

Articles