Forecasting of Rubber Production in North Sumatra with Backpropagation Algorithm

Authors

  • Josua Fernando Simanjuntak STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Riki Winanjaya STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Wendi Robiansyah STIKOM Tunas Bangsa, Pematangsiantar, Indonesia

DOI:

https://doi.org/10.55123/jomlai.v1i3.917

Keywords:

ANN, Prediction, Rubber Production, Machine Learning

Abstract

Rubber is a commodity to produce tires, balloons, and other rubber-based products. Indonesia is the second largest rubber producer and distributor in the world. But, rubber production level tends to fluctuate. Therefore, an analysis is needed to predict rubber production in the future thus rubber plantations, especially folk-owned, can take steps to prevent if declines in production are found. One way that can be done to predict is by utilizing Artificial Neural Network with Backpropagation method, since it provides accurate results. In this research, 10 network architecture models were tested and the best architecture achieved was 10-10-11-1 with accuracy of 96%. With that architecture, predictions are done and resulted in estimated rubber production in North Sumatra for 2021-2025.

References

W. Dewi and R. F. Siahaan, “Sistem Pendukung Keputusan Pemilihan Jenis Tanaman Karet Untuk Menghasilkan Bibit Tanaman Karet Terbaik Menggunakan Metode Topsis,” Jurnal Nasional Komputasi dan Teknologi Informasi, vol. 4, no. 6, pp. 460–468, 2021.

V. Krismawan, M. Muchtolifah, and S. Sishadiyati, “Pengaruh Nilai Tukar, Produksi Karet Indonesia Dan Harga Karet Indonesia Terhadap Ekspor Karet Indonesia Periode Tahun 2008 – 2019,” Jurnal Ekobis Dewantara, vol. 4, no. 3, pp. 134–143, 2021.

H. A. Dalimunthe, P. H. Prihanto, and E. Achmad, “Analisis faktor-faktor yang mempengaruhi produksi karet di Kecamatan Jaluko Kabupaten Muaro Jambi ( studi kasus Desa Muhajirin ),” e-Jurnal Ekonomi Sumberdaya dan Lingkungan, vol. 10, no. 2, pp. 81–90, 2021.

A. Rouf and L. N. Effendi, “Peranan SDM dan SDA Pada Kondisi TM Eksisting Terhadap Perolehan Produktivitas Tanaman Karet,” Seminar Nasional & Call For Paper HUBISINTEK, pp. 1201–1210, 2021.

E. H. Damanik, E. Irawan, and F. Rizki, “Jaringan Syaraf Tiruan Untuk Memprediksi Nilai Siswa SMA Menggunakan Backpropagation,” Jurnal Sistem Informasi dan Ilmu Komputer Prima, vol. 4, no. 2, pp. 1–7, 2021.

R. Winanjaya, “Identifikasi Mahasiswa Berprestasi Menggunakan Algoritma Backpropagation,” vol. 1, no. 2, pp. 162–167, 2020.

B. H. Hayadi, I. G. I. Sudipa, and A. P. Windarto, “Model Peramalan Artificial Neural Network pada Peserta KB Aktif Jalur Pemerintahan menggunakan Artificial Neural Network Back-Propagation,” Matrik: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer, vol. 21, no. 1, pp. 11–20, 2021.

G. Z. Muflih, “Pengaruh Nilai Hidden layer dan Learning rate Terhadap Kecepatan Perlatihan Jaringan Saraf Tiruan Backpropagation,” Jurnal Riset Teknologi Informasi dan Komputer (JURISTIK), vol. 1, no. 2, pp. 12–17, 2021.

Nurhanudin and J. E. Riwuroh, “Prediksi Jumlah Pendaftar Haji Lanjut Usia Menggunakan Jaringan Syaraf Tiruan Backpropagation,” JIKO (Jurnal Informatika dan Komputer), vol. 4, no. 2, pp. 112–121, 2021.

Badan Pusat Statistik Sumatra Utara, “Luas Tanaman dan Produksi Karet Tanaman Perkebunan Rakyat Menurut Kabupaten/Kota,” 2022. .

R. R. A. and S. Natarsyah, “Penerapan Metode Least Square Untuk Prediksi Hasil Sadap Karet,” PROGRESIF, vol. 13, no. 1, pp. 1569–1576, 2017.

A. Nasution, “Forecasting Produksi Karet Menggunakan Metode Weighted Moving Average,” Seminar Nasional Royal (SENAR), no. September, pp. 133–138, 2018.

D. L. Rahakbauw, F. J. Rianekuay, and Y. A. Lesnussa, “Penerapan Metode Fuzzy Mamdani Untuk Memprediksi Jumlah Produksi Karet (Studi Kasus: Data Persediaan Dan Permintaan Produksi Karet Pada Ptp Nusantara XIV (Persero) Kebun Awaya, Teluk Elpaputih, Maluku-Indonesia),” Jurnal Ilmiah Matematika dan Terapan, vol. 16, no. 1, pp. 119–127, 2019.

V. V. Utari, A. Wanto, I. Gunawan, and Z. M. Nasution, “Prediksi Hasil Produksi Kelapa Sawit PTPN IV Bahjambi Menggunakan Algoritma Backpropagation,” Journal of Computer System and Informatics, vol. 2, no. 3, pp. 271–279, 2021.

O. I. Winanda and S. A. Zega, “Prediksi Rating Film Animasi Berdasarkan Elemen Mise En Scene Menggunakan Neural Network,” 2019.

G. W. Bhawika et al., “Implementation of ANN for Predicting the Percentage of Illiteracy in Indonesia by Age Group,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.

A. Wanto et al., “Analysis of the Backpropagation Algorithm in Viewing Import Value Development Levels Based on Main Country of Origin,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.

E. Siregar, H. Mawengkang, E. B. Nababan, and A. Wanto, “Analysis of Backpropagation Method with Sigmoid Bipolar and Linear Function in Prediction of Population Growth,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.

M. K. Z. Sormin, P. Sihombing, A. Amalia, A. Wanto, D. Hartama, and D. M. Chan, “Predictions of World Population Life Expectancy Using Cyclical Order Weight / Bias,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.

A. Wanto et al., “Analysis of the Accuracy Batch Training Method in Viewing Indonesian Fisheries Cultivation Company Development,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.

Y. Andriani, H. Silitonga, and A. Wanto, “Analisis Jaringan Syaraf Tiruan untuk prediksi volume ekspor dan impor migas di Indonesia,” Register: Jurnal Ilmiah Teknologi Sistem Informasi, vol. 4, no. 1, pp. 30–40, 2018.

W. Saputra, J. T. Hardinata, and A. Wanto, “Implementation of Resilient Methods to Predict Open Unemployment in Indonesia According to Higher Education Completed,” JITE (Journal of Informatics and Telecommunication Engineering), vol. 3, no. 1, pp. 163–174, 2019.

N. L. W. S. R. Ginantra et al., “Performance One-step secant Training Method for Forecasting Cases,” Journal of Physics: Conference Series, vol. 1933, no. 1, pp. 1–8, 2021.

A. M. Indrawan and A. P. Kusuma, “Analisis Algoritma Jaringan Syaraf Tiruan Dengan Metode Backpropagation Dalam Mendeteksi Keahlian Mahasiswa Program Studi Teknik Informatika Universitas Islam Balitar,” Jurnal MNEMONIC, vol. 5, no. 1, pp. 9–13, 2022.

E. P. Cynthia and E. Ismanto, “Jaringan Syaraf Tiruan Algoritma Backpropagation Dalam Memprediksi Ketersediaan Komoditi Pangan Provinsi Riau,” Seminar Nasional Teknologi Informasi, Komunikasi dan Industri (SNTIKI) 9, pp. 18–19, 2017

Downloads

Published

2022-10-18

How to Cite

Simanjuntak, J. F., Winanjaya, R., & Robiansyah, W. (2022). Forecasting of Rubber Production in North Sumatra with Backpropagation Algorithm. JOMLAI: Journal of Machine Learning and Artificial Intelligence, 1(3), 207–214. https://doi.org/10.55123/jomlai.v1i3.917

Issue

Section

Articles