Implementation of the Multiple Linear Regression Method to Predict Student Achievement Based on Social Status and Discipline
DOI:
https://doi.org/10.55123/jomlai.v2i2.3128Keywords:
Linear Regression, Student achievement, Prediction, Social status, DisciplineAbstract
This research aims to implement the multiple linear regression method as an analytical tool to predict the academic performance level of students at SMA Kartika 1-4. The primary focus of the analysis will be placed on four critical predictor variables, namely parental income, discipline, attendance, and academic achievement. The multiple linear regression method is chosen because it can provide a robust statistical foundation for understanding the complex relationships between these variables and academic performance. Through the collection of data related to students' socio-economic status and their level of discipline, this research will build a multiple linear regression model to predict the level of student performance. The results of this research are expected to provide a more comprehensive understanding of the factors influencing students' performance in the environment of SMA Kartika 1-4. In-depth analysis of the relationships between parental income, discipline, attendance, and academic achievement can offer valuable contextual insights. This research is anticipated to provide a basis for the development of strategies or policies at the school level to improve student performance by paying specific attention to these aspects.
References
I. A. Setyani and Y. R. Sipayung, ‘Sistem Pendukung Keputusan Menentukan Siswa Berprestasi dengan Metode SAW (Simple Addtive Weighting)’, Jurnal Sistem Komputer dan Informatika (JSON), vol. 4, no. 4, pp. 632–641, 2023, doi: 10.30865/json.v4i4.6179.
E. J. A. Sihombing and P. Yugopuspito, ‘Pengaruh Self-Efficacy, Technology Acceptance, dan Motivasi Belajar Terhadap Prestasi Akademis Siswa dalam Online Learning di SMPK Kalam Kudus Dumai’, Journal on Education, vol. 5, no. 4, pp. 12881–12896, 2023, doi: 10.31004/joe.v5i4.2276.
A. Nasution et al., ‘Analisis Pemahaman Konseptual Terhadap Motivasi Dan Gaya Belajar Siswa Bimbingan Belajar’, Jurnal Kependidikan, vol. 8, no. 1, pp. 134–146, 2023.
M. Ibnu Sholeh, ‘Menghadapi Persaingan Sengit Lembaga Pendidikan: Strategi Diferensiasi dalam Pemasaran Lembaga Pendidikan Islam di Indonesia’, AKSI: Jurnal Manajemen Pendidikan Islam, vol. 1, no. 3, pp. 192–222, 2020, doi: 10.37348/aksi.v1i3.259.
Rinda Ristiyani and M. C. Asmawan, ‘Pembentukan Karakter Peserta Didik Melalui Kegiatan Pramuka’, Journal of Education Action Research, vol. 7, no. 4, pp. 535–543, 2023, doi: 10.23887/jear.v7i4.68688.
T. Prasetyo, N. Alya, and F. Rahmatillah, ‘Peran Orang Tua Dalam Meningkatkan Prestasi Akademik Anak: Studi Kualitatif Tentang Pola Asuh Dan Pembinaan Keluarga’, Jurnal Penjaminan Mutu, vol. 9, no. 2, pp. 207–215, 2023, [Online]. Available: http://ojs.uhnsugriwa.ac.id/index.php/JPM
N. Arminarahmah, A. D. GS, G. W. Bhawika, M. P. Dewi, and A. Wanto, ‘Mapping the Spread of Covid-19 in Asia Using Data Mining X-Means Algorithms’, IOP Conference Series: Materials Science and Engineering, vol. 1071, no. 1, p. 012018, 2021, doi: 10.1088/1757-899x/1071/1/012018.
T. H. Sinaga, A. Wanto, I. Gunawan, S. Sumarno, and Z. M. Nasution, ‘Implementation of Data Mining Using C4.5 Algorithm on Customer Satisfaction in Tirta Lihou PDAM’, Journal of Computer Networks, Architecture, and High-Performance Computing, vol. 3, no. 1, pp. 9–20, 2021, doi: 10.47709/cnahpc.v3i1.923.
A. Pradipta, D. Hartama, A. Wanto, S. Saifullah, and J. Jalaluddin, ‘The Application of Data Mining in Determining Timely Graduation Using the C45 Algorithm’, IJISTECH (International Journal of Information System & Technology), vol. 3, no. 1, pp. 31–36, 2019, doi: 10.30645/ijistech.v3i1.30.
N. A. Febriyati, A. D. Gs, and A. Wanto, ‘GRDP Growth Rate Clustering in Surabaya City uses the K- Means Algorithm’, International Journal of Information System & Technology, vol. 3, no. 2, pp. 276–283, 2020, doi: 10.30645/ijistech.v3i2.60.
I. Parlina et al., ‘Naive Bayes Algorithm Analysis to Determine the Percentage Level of visitors the Most Dominant Zoo Visit by Age Category’, in Journal of Physics: Conference Series, Aug. 2019, p. 012031. doi: 10.1088/1742-6596/1255/1/012031.
S. R. Ningsih, R. Wulansari, D. Hartama, A. P. Windarto, and A. Wanto, ‘Analysis of PROMETHEE II Method on Selection of Lecturer Community Service Grant Proposals’, in Journal of Physics: Conference Series, Aug. 2019, p. 012004. doi: 10.1088/1742-6596/1255/1/012004.
P. Alkhairi, L. P. Purba, A. Eryzha, A. P. Windarto, and A. Wanto, ‘The Analysis of the ELECTREE II Algorithm in Determining the Doubts of the Community Doing Business Online’, in Journal of Physics: Conference Series, Institute of Physics Publishing, Sep. 2019, p. 012010. doi: 10.1088/1742-6596/1255/1/012010.
R. Watrianthos, W. A. Ritonga, A. Rengganis, A. Wanto, and M. Isa Indrawan, ‘Implementation of PROMETHEE-GAIA Method for Lecturer Performance Evaluation’, Journal of Physics: Conference Series, vol. 1933, no. 1, p. 012067, 2021, doi: 10.1088/1742-6596/1933/1/012067.
S. Sundari, A. Wanto, Saifullah, and I. Gunawan, ‘Sistem Pendukung Keputusan Dengan Menggunakan Metode Electre Dalam Merekomendasikan Dosen Berprestasi Bidang Ilmu Komputer (Study Kasus di AMIK & STIKOM Tunas Bangsa)’, in Seminar Nasional Multi Disiplin Ilmu, 2017, pp. 1–6. doi: 10.17605/OSF.IO/4TWG6.
M. Widyasuti, A. Wanto, D. Hartama, and E. Purwanto, ‘Rekomendasi Penjualan Aksesoris Handphone Menggunakan Metode Analitycal Hierarchy Process (AHP)’, Konferensi Nasional Teknologi Informasi dan Komputer (KOMIK), vol. I, no. 1, pp. 27–32, 2017.
I. A. R. Simbolon, F. Yatussa’ada, and A. Wanto, ‘Penerapan Algoritma Backpropagation dalam Memprediksi Persentase Penduduk Buta Huruf di Indonesia’, Jurnal Informatika Upgris, vol. 4, no. 2, pp. 163–169, 2018, doi: 10.26877/jiu.v4i2.2423.
W. Saputra, J. T. Hardinata, and A. Wanto, ‘Resilient method in determining the best architectural model for predicting open unemployment in Indonesia’, IOP Conference Series: Materials Science and Engineering, vol. 725, no. 1, p. 012115, Jan. 2020, doi: 10.1088/1757-899X/725/1/012115.
E. Hartato, D. Sitorus, and A. Wanto, ‘Analisis Jaringan Saraf Tiruan Untuk Prediksi Luas Panen Biofarmaka Di Indonesia’, SemanTIK, vol. 4, no. 1, pp. 49–56, 2018, doi: 10.55679/semantik.v4i1.4201.
B. K. Sihotang and A. Wanto, ‘Analisis Jaringan Syaraf Tiruan Dalam Memprediksi Jumlah Tamu Pada Hotel Non Bintang’, Jurnal Teknologi Informasi Techno, vol. 17, no. 4, pp. 333–346, 2018, doi: 10.33633/tc.v17i4.1762.
I. S. Purba and A. Wanto, ‘Prediksi Jumlah Nilai Impor Sumatera Utara Menurut Negara Asal Menggunakan Algoritma Backpropagation’, Jurnal Teknologi Informasi Techno, vol. 17, no. 3, pp. 302–311, 2018, doi: 10.33633/tc.v17i3.1769.
S. Widaningsih and S. Yusuf, ‘Penerapan Data Mining untuk Memprediksi Siswa Berprestasi dengan Menggunakan Algoritma K Nearest Neighbor’, JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 9, no. 3, pp. 2598–2611, 2022, doi: 10.35957/jatisi.v9i3.859.
F. P. Dewi, P. S. Aryni, and Y. Umaidah, ‘Implementasi Algoritma K-Means Clustering Seleksi Siswa Berprestasi Berdasarkan Keaktifan dalam Proses Pembelajaran’, JISKA (Jurnal Informatika Sunan Kalijaga), vol. 7, no. 2, pp. 111–121, 2022, doi: 10.14421/jiska.2022.7.2.111-121.
A. M. Husein and R. E. H. Hutauruk, ‘Penerapan Algoritma C4.5 Dalam Pemilihan Siswa Berprestasi di SMPN 10 Medan’, Digital Transformation Technology, vol. 2, no. 1, pp. 8–11, 2022, doi: 10.47709/digitech.v2i1.1768.
Y. Asohi and A. Andri, ‘Impelementasi Algoritma Regresi Linier Berganda Untuk Prediksi Penjualan’, Jurnal Nasional Ilmu Komputer, vol. 1, no. 3, pp. 149–158, 2020, doi: 10.47747/jurnalnik.v1i3.161.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Reynaldo, Indra Gunawan, Iin Parlina

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2022 The authors. Published by Yayasan Literasi Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
The author(s) whose article is published in the JOMLAI journal attain the copyright for their article and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. By submitting the manuscript to JOMLAI, the author(s) agree with this policy. No special document approval is required.
The author(s) guarantee that:their article is original, written by the mentioned author(s),
- has never been published before,
- does not contain statements that violate the law, and
- does not violate the rights of others, is subject to copyright held exclusively by the author(s), and is free from the rights of third parties, and that the necessary written permission to quote from other sources has been obtained by the author(s).
The author(s) retain all rights to the published work, such as (but not limited to) the following rights:
- Copyright and other proprietary rights related to the article, such as patents,
- The right to use the substance of the article in its own future works, including lectures and books,
- The right to reproduce the article for its own purposes,
- The right to archive all versions of the article in any repository, and
- The right to enter into separate additional contractual arrangements for the non-exclusive distribution of published versions of the article (for example, posting them to institutional repositories or publishing them in a book), acknowledging its initial publication in this journal (JOMLAI: Journal of Machine Learning and Artificial Intelligence).
Suppose the article was prepared jointly by more than one author. Each author submitting the manuscript warrants that all co-authors have given their permission to agree to copyright and license notices (agreements) on their behalf and notify co-authors of the terms of this policy. JOMLAI will not be held responsible for anything that may arise because of the writer's internal dispute. JOMLAI will only communicate with correspondence authors.
Authors should also understand that their articles (and any additional files, including data sets, and analysis/computation data) will become publicly available once published. The license of published articles (and additional data) will be governed by a Creative Commons Attribution-ShareAlike 4.0 International License. JOMLAI allows users to copy, distribute, display and perform work under license. Users need to attribute the author(s) and JOMLAI to distribute works in journals and other publication media. Unless otherwise stated, the author(s) is a public entity as soon as the article is published



















