Selection Analysis of Pre-Employment Card Recipients Using the Simple Additive Weighting (SAW) Method

Authors

  • Tri Ayu Lestari STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Harly Okprana STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Rizky Khairunnisa Sormin STIKOM Tunas Bangsa, Pematangsiantar, Indonesia

DOI:

https://doi.org/10.55123/jomlai.v1i2.964

Keywords:

DSS, SAW, Government Programs, Pre-Employment Card

Abstract

The Pre-Employment Card Program is a work and business capability development program that focuses on job seekers, laborers or workers who have finished their working period, and workers or workers who need to improve their skills, including those who have macro and micro businesses. One of these government programs aims to reduce unemployment due to the economic impact of the Covid-19 virus outbreak. Decision Support System is an effective system used to produce calculations with the output in the form of ranking. And the purpose of this research is to build a decision support system by analyzing the selection of Pre-Recipients of Pre-Employment Cards with the Simple Additive Weighting (SAW) Method. The data source of this study was obtained from the distribution of questionnaires/questionnaires which were distributed randomly to the people of Tempel Village, Kerasaan Rejo Village, Pematang Bandar. This study uses 50 alternatives and 7 criteria.

References

G. W. Bhawika et al., “Implementation of ANN for Predicting the Percentage of Illiteracy in Indonesia by Age Group,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.

A. Wanto et al., “Analysis of the Backpropagation Algorithm in Viewing Import Value Development Levels Based on Main Country of Origin,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.

E. Siregar, H. Mawengkang, E. B. Nababan, and A. Wanto, “Analysis of Backpropagation Method with Sigmoid Bipolar and Linear Function in Prediction of Population Growth,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.

M. K. Z. Sormin, P. Sihombing, A. Amalia, A. Wanto, D. Hartama, and D. M. Chan, “Predictions of World Population Life Expectancy Using Cyclical Order Weight / Bias,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.

A. Wanto et al., “Analysis of the Accuracy Batch Training Method in Viewing Indonesian Fisheries Cultivation Company Development,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.

Y. Andriani, H. Silitonga, and A. Wanto, “Analisis Jaringan Syaraf Tiruan untuk prediksi volume ekspor dan impor migas di Indonesia,” Register: Jurnal Ilmiah Teknologi Sistem Informasi, vol. 4, no. 1, pp. 30–40, 2018.

W. Saputra, J. T. Hardinata, and A. Wanto, “Implementation of Resilient Methods to Predict Open Unemployment in Indonesia According to Higher Education Completed,” JITE (Journal of Informatics and Telecommunication Engineering), vol. 3, no. 1, pp. 163–174, 2019.

N. L. W. S. R. Ginantra et al., “Performance One-step secant Training Method for Forecasting Cases,” Journal of Physics: Conference Series, vol. 1933, no. 1, pp. 1–8, 2021.

N. Arminarahmah, A. D. GS, G. W. Bhawika, M. P. Dewi, and A. Wanto, “Mapping the Spread of Covid-19 in Asia Using Data Mining X-Means Algorithms,” IOP Conf. Series: Materials Science and Engineering, vol. 1071, no. 1, p. 012018, 2021.

A. Pradipta, D. Hartama, A. Wanto, S. Saifullah, and J. Jalaluddin, “The Application of Data Mining in Determining Timely Graduation Using the C45 Algorithm,” IJISTECH (International Journal of Information System & Technology), vol. 3, no. 1, pp. 31–36, 2019.

T. H. Sinaga, A. Wanto, I. Gunawan, S. Sumarno, and Z. M. Nasution, “Implementation of Data Mining Using C4.5 Algorithm on Customer Satisfaction in Tirta Lihou PDAM,” Journal of Computer Networks, Architecture, and High-Performance Computing, vol. 3, no. 1, pp. 9–20, 2021.

N. A. Febriyati, A. D. GS, and A. Wanto, “GRDP Growth Rate Clustering in Surabaya City uses the K- Means Algorithm,” International Journal of Information System & Technology, vol. 3, no. 2, pp. 276–283, 2020.

J. Hutagalung, N. L. W. S. R. Ginantra, G. W. Bhawika, W. G. S. Parwita, A. Wanto, and P. D. Panjaitan, “COVID-19 Cases and Deaths in Southeast Asia Clustering using K-Means Algorithm,” Journal of Physics: Conference Series, vol. 1783, no. 1, p. 012027, 2021.

I. Parlina et al., “Naive Bayes Algorithm Analysis to Determine the Percentage Level of visitors the Most Dominant Zoo Visit by Age Category,” in Journal of Physics: Conference Series, 2019, vol. 1255, no. 1, p. 012031.

M. A. Hanafiah and A. Wanto, “Implementation of Data Mining Algorithms for Grouping Poverty Lines by District/City in North Sumatra,” International Journal of Information System & Technology, vol. 3, no. 2, pp. 315–322, 2020.

I. S. Damanik, A. P. Windarto, A. Wanto, Poningsih, S. R. Andani, and W. Saputra, “Decision Tree Optimization in C4.5 Algorithm Using Genetic Algorithm,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–7, 2019.

A. Wanto et al., Data Mining : Algoritma dan Implementasi. Yayasan Kita Menulis, 2020.

D. Hartama, A. Perdana Windarto, and A. Wanto, “The Application of Data Mining in Determining Patterns of Interest of High School Graduates,” Journal of Physics: Conference Series, vol. 1339, no. 1, p. 012042, Dec. 2019.

A. Wanto and E. Kurniawan, “Seleksi Penerimaan Asisten Laboratorium Menggunakan Algoritma AHP Pada AMIK-STIKOM Tunas Bangsa Pematangsiantar,” Jurnal Informatika dan Komputer (JIKO), vol. 3, no. 1, pp. 11–18, 2018.

V. V. Sianipar, A. Wanto, and M. Safii, “Decision Support System for Determination of Village Fund Allocation Using AHP Method,” The IJICS (International Journal of Informatics and Computer Science) ISSN, vol. 4, no. 1, pp. 20–28, 2020.

P. P. P. A. N. . F. I. R.H Zer, Masitha, A. P. Windarto, and A. Wanto, “Analysis of the ELECTRE Method on the Selection of Student Creativity Program Proposals,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, Aug. 2019.

D. M. Sinaga, R. R, R. Alfah, A. P. Windarto, and A. Wanto, “Jurnal Sains dan Informatika,” Jurnal Sains dan Informatika, vol. 5, no. 2, pp. 129–135, 2018.

D. R. Sari, N. Rofiqo, D. Hartama, A. P. Windarto, and A. Wanto, “Analysis of the Factors Causing Lazy Students to Study Using the ELECTRE II Algorithm,” Journal of Physics: Conference Series, vol. 1255, no. 1, p. 012007, Aug. 2019.

T. Imandasari, A. Wanto, and A. P. Windarto, “Analisis Pengambilan Keputusan Dalam Menentukan Mahasiswa PKL Menggunakan Metode PROMETHEE,” Jurnal Riset Komputer (JURIKOM), vol. 5, no. 3, pp. 234–239, 2018.

R. Watrianthos, W. A. Ritonga, A. Rengganis, A. Wanto, and M. Isa Indrawan, “Implementation of PROMETHEE-GAIA Method for Lecturer Performance Evaluation,” Journal of Physics: Conference Series, vol. 1933, no. 1, p. 012067, 2021.

R. Fauzan, Y. Indrasary, and N. Muthia, “Sistem Pendukung Keputusan Penerimaan Beasiswa Bidik Misi di POLIBAN dengan Metode SAW Berbasis Web,” Jurnal Online Informatika, vol. 2, no. 2, p. 79, 2018.

E. L. Ruskan, A. Ibrahim, and D. C. Hartini, “Sistem Pendukung Keputusan Pemilihan Hotel Di Kota Palembang Dengan Metode Simple Additive Weighting (Saw),” Jurnal Sistem Informasi, vol. 5, no. 1, pp. 546–565, 2013.

S. Sunarti, “Sistem Pendukung Keputusan Pemilihan Wisata Kuliner Di Wilayah Kota Depok Menggunakan Metode Simple Additive Weighting (SAW),” Jurnal Eksplora Informatika, vol. 9, no. 2, pp. 105–110, 2020.

E. L. Ruskan, “Kolaborasi Metode Saw Dan Ahp Untuk Sistem Pendukung Keputusan Penilaian Kinerja Asisten Laboratorium,” JSI: Jurnal Sistem Informasi (E-Journal), vol. 9, no. 1, pp. 1204–1215, 2017.

A. S. Putra, D. R. Aryanti, and I. Hartati, “Metode SAW (Simple Additive Weighting) sebagai Sistem Pendukung Keputusan Guru Berprestasi ( Studi Kasus : SMK Global Surya),” Prosiding Seminar Nasional Darmajaya, vol. 1, no. 1, pp. 85–97, 2018.

Downloads

Published

2022-09-26

How to Cite

Lestari, T. A., Okprana, H., & Sormin, R. K. (2022). Selection Analysis of Pre-Employment Card Recipients Using the Simple Additive Weighting (SAW) Method. JOMLAI: Journal of Machine Learning and Artificial Intelligence, 1(2), 185–190. https://doi.org/10.55123/jomlai.v1i2.964

Issue

Section

Articles