Classification Techniques in Predicting New Student Admission Using the Naïve Bayes Method

Authors

  • Suwayudhi Suwayudhi STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Eka Irawan STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Bahrudi Efendi Damanik STIKOM Tunas Bangsa, Pematangsiantar, Indonesia

DOI:

https://doi.org/10.55123/jomlai.v1i3.963

Keywords:

Classification, Data Mining, Naive Bayes, Prediction, New Student

Abstract

Admission of new students is the registration process for new students entering school and the initial gate through which students enter the object of Education; this activity is the starting point for determining the smoothness of the tasks of a school, assisted by teaching staff and equipped with optimal facilities and infrastructure in teaching and learning activities, producing skilled and broad-minded students. However, the uncertainty of the number of registrants also influences the policies that will be taken in the future. Therefore, it is necessary to forecast or predict to estimate the number of students who are likely to register so that the school can prepare everything. In this study, the prediction process for new students will use a classification technique using the Naïve Bayes method. This study aims to predict the rise and fall of the number of students who register using the Naïve Bayes method. The research data was obtained by distributing questionnaires randomly to 200 respondents (students) who were about to enter high school. The data is accumulated using the help of Microsoft excel. The results obtained are that the prediction of high-class precision is 100%, while the prediction of low-class precision is 94.23%. The conclusion is that the extracurricular, cost and distance criteria need attention and improvement. This is because disinterest and low prediction are higher than interest with high prediction results.

References

A. Siti, “Analisis komparasi metode tsukamoto dan sugeno dalam prediksi jumlah siswa baru,” Jurnal Teknologi Informasi dan Komunikasi, vol. 8, no. 2, pp. 57–63, 2016.

V. V. Sianipar, A. Wanto, and M. Safii, “Decision Support System for Determination of Village Fund Allocation Using AHP Method,” The IJICS (International Journal of Informatics and Computer Science) ISSN, vol. 4, no. 1, pp. 20–28, 2020.

R. Simarmata, R. W. Sembiring, R. Dewi, A. Wanto, and E. Desiana, “Penentuan Masyarakat Penerima Bantuan Perbaikan Rumah di Kecamatan Siantar Barat Menggunakan Metode ELECTRE,” Journal of Computer System and Informatics (JoSYC), vol. 1, no. 2, pp. 68–75, 2020.

R. Watrianthos, W. A. Ritonga, A. Rengganis, A. Wanto, and M. Isa Indrawan, “Implementation of PROMETHEE-GAIA Method for Lecturer Performance Evaluation,” Journal of Physics: Conference Series, vol. 1933, no. 1, p. 012067, 2021.

S. R. Ningsih, D. Hartama, A. Wanto, I. Parlina, and Solikhun, “Penerapan Sistem Pendukung Keputusan Pada Pemilihan Objek Wisata di Simalungun,” in Seminar Nasional Teknologi Komputer & Sains (SAINTEKS), 2019, pp. 731–735.

N. Nasution, G. W. Bhawika, A. Wanto, N. L. W. S. R. Ginantra, and T. Afriliansyah, “Smart City Recommendations Using the TOPSIS Method,” IOP Conference Series: Materials Science and Engineering, vol. 846, no. 1, pp. 1–6, 2020.

R. A. Hutasoit, S. Solikhun, and A. Wanto, “Analisa Pemilihan Barista dengan Menggunakan Metode TOPSIS (Studi Kasus: Mo Coffee),” KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), vol. 2, no. 1, pp. 256–262, 2018.

I. M. Muhamad, S. A. Wardana, A. Wanto, and A. P. Windarto, “Algoritma Machine Learning untuk penentuan Model Prediksi Produksi Telur Ayam Petelur di Sumatera,” Journal of Informatics, Electrical and Electronics Engineering, vol. 1, no. 4, pp. 126–134, 2022.

M. Mahendra, R. C. Telaumbanua, A. Wanto, and A. P. Windarto, “Akurasi Prediksi Ekspor Tanaman Obat , Aromatik dan Rempah-Rempah Menggunakan Machine Learning,” KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 2, no. 6, pp. 207–215, 2022.

R. Puspadini, A. Wanto, and N. Arminarahmah, “Penerapan ML dengan Teknik Bayesian Regulation untuk Peramalan,” Journal of Computer System and Informatics (JoSYC), vol. 3, no. 3, pp. 147–155, 2022.

N. L. W. S. R. Ginantra, A. D. GS, S. Andini, and A. Wanto, “Pemanfaatan Algoritma Fletcher-Reeves untuk Penentuan Model Prediksi Harga Nilai Ekspor Menurut Golongan SITC,” Building of Informatics, Technology and Science (BITS), vol. 3, no. 4, pp. 679–685, 2022.

N. Arminarahmah, S. D. Rizki, O. A. Putra, U. Islam, K. Muhammad, and A. Al, “Performance Analysis and Model Determination for Forecasting Aluminum Imports Using the Powell-Beale Algorithm,” IJISTECH (International Journal of Information System & Technology), vol. 5, no. 5, pp. 624–632, 2022.

N. L. W. S. R. Ginantra et al., “Performance One-step secant Training Method for Forecasting Cases,” Journal of Physics: Conference Series, vol. 1933, no. 1, pp. 1–8, 2021.

A. Perdana, S. Defit, and A. Wanto, “Optimalisasi Parameter dengan Cross Validation dan Neural Back-propagation Pada Model Prediksi Pertumbuhan Industri Mikro dan Kecil,” Jurnal Sistem Informasi Bisnis, vol. 01, no. 11, pp. 34–42, 2021.

N. L. W. S. R. Ginantra, M. A. Hanafiah, A. Wanto, R. Winanjaya, and H. Okprana, “Utilization of the Batch Training Method for Predicting Natural Disasters and Their Impacts,” IOP Conf. Series: Materials Science and Engineering, vol. 1071, no. 1, p. 012022, 2021.

A. Wanto, S. Defit, and A. P. Windarto, “Algoritma Fungsi Perlatihan pada Machine Learning berbasis ANN untuk Peramalan Fenomena Bencana,” RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 2, pp. 254–264, 2021.

V. V. Utari, A. Wanto, I. Gunawan, and Z. M. Nasution, “Prediksi Hasil Produksi Kelapa Sawit PTPN IV Bahjambi Menggunakan Algoritma Backpropagation,” Journal of Computer System and Informatics (JoSYC, vol. 2, no. 3, pp. 271–279, 2021.

N. Arminarahmah, A. D. GS, G. W. Bhawika, M. P. Dewi, and A. Wanto, “Mapping the Spread of Covid-19 in Asia Using Data Mining X-Means Algorithms,” IOP Conf. Series: Materials Science and Engineering, vol. 1071, no. 1, p. 012018, 2021.

J. Hutagalung, N. L. W. S. R. Ginantra, G. W. Bhawika, W. G. S. Parwita, A. Wanto, and P. D. Panjaitan, “COVID-19 Cases and Deaths in Southeast Asia Clustering using K-Means Algorithm,” Journal of Physics: Conference Series, vol. 1783, no. 1, p. 012027, 2021.

N. A. Febriyati, A. D. GS, and A. Wanto, “GRDP Growth Rate Clustering in Surabaya City uses the K- Means Algorithm,” International Journal of Information System & Technology, vol. 3, no. 2, pp. 276–283, 2020.

M. A. Hanafiah and A. Wanto, “Implementation of Data Mining Algorithms for Grouping Poverty Lines by District/City in North Sumatra,” International Journal of Information System & Technology, vol. 3, no. 2, pp. 315–322, 2020.

T. H. Sinaga, A. Wanto, I. Gunawan, S. Sumarno, and Z. M. Nasution, “Implementation of Data Mining Using C4.5 Algorithm on Customer Satisfaction in Tirta Lihou PDAM,” Journal of Computer Networks, Architecture, and High-Performance Computing, vol. 3, no. 1, pp. 9–20, 2021.

A. Wanto et al., Data Mining : Algoritma dan Implementasi. Yayasan Kita Menulis, 2020.

W. T. C. Gultom, A. Wanto, I. Gunawan, M. R. Lubis, and I. O. Kirana, “Application ofThe Levenberg Marquardt Method In Predict The Amount of Criminality in Pematangsiantar City,” Journal of Computer Networks, Architecture, and High-Performance Computing, vol. 3, no. 1, pp. 21–29, 2021.

R. Yanto and R. Khoiriah, “Implementasi Data Mining dengan Metode Algoritma Apriori dalam Menentukan Pola Pembelian Obat,” Creative Information Technology Journal, vol. 2, no. 2, p. 102, 2015.

S. Faisal, “Klasifikasi Data Minning Menggunakan Algoritma C4.5 Terhadap Kepuasan Pelanggan Sewa Kamera Cikarang,” Techno Xplore : Jurnal Ilmu Komputer dan Teknologi Informasi, vol. 4, no. 1, pp. 1–8, 2019.

S. M. Dewi, A. P. Windarto, and D. Hartama, “Penerapan Datamining Dengan Metode Klasifikasi Untuk Strategi Penjualan Produk Di Ud.Selamat Selular,” KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), vol. 3, no. 1, pp. 617–621, 2019.

K. E. Setyaputri, Megawati, M. W. Fadholi, and F. C. Mukti, “Rancang Bangun Sistem Pelaporan a1 Berbasis Web Di Badan Pengawas Pemilu Kabupaten Brebes,” Jurnal Teknik Informatika dan Sistem Informasi (JURTISI), vol. 1, no. 1, pp. 1–7, 2021.

A. Senika, R. Rasiban, and D. Iskandar, “Implementasi Metode Naïve Bayes Dalam Penilaian Kinerja Sales Marketing Pada PT. Pachira Distrinusa,” Jurnal Media Informatika Budidarma, vol. 6, no. 1, p. 701, 2022.

A. G. P. Alistiani, Robby Rizky, Lili Sujai, “Implementasi Metode Naive Bayes Dan Klasifikasi Pegawai Terbaik Menggunakan Metode Naive Bayes,” Situstika Fikunma, vol. 8, no. 1, pp. 1–7, 2019.

Downloads

Published

2022-10-18

How to Cite

Suwayudhi, S., Irawan, E., & Damanik, B. E. (2022). Classification Techniques in Predicting New Student Admission Using the Naïve Bayes Method. JOMLAI: Journal of Machine Learning and Artificial Intelligence, 1(3), 251–256. https://doi.org/10.55123/jomlai.v1i3.963

Issue

Section

Articles