Implementation of One-step Secant Algorithm for Forecasting Open Unemployment by Highest Educational Graduate

Authors

  • Ismi Azhami STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Eka Irawan STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Dedi Suhendro STIKOM Tunas Bangsa, Pematangsiantar, Indonesia

DOI:

https://doi.org/10.55123/jomlai.v1i3.946

Keywords:

Artificial Neural Networks, One-step secant, Forecasting, Open Unemployment, Higher Education

Abstract

Based on data, the open unemployment rate according to the highest education graduate in Indonesia shows the number of semester unemployment which has an unstable value, sometimes up and sometimes down. This study aims to implement the ability and performance of one of the training functions on the backpropagation algorithm, namely one-step secant, which can later be used as a reference in terms of data forecasting. The one-step secant algorithm is an algorithm that is able to train any network as long as the input, weight and transfer functions have derivative functions and this algorithm is able to make training more efficient because it does not require a very long time. The data used in this study is open unemployment data according to the highest education completed in Indonesia in 2006-2021 based on semester, which is sourced from the Indonesian Central Statistics Agency. Based on this data, a network architecture model will be formed and determined using the One-step secant method, including 14-13-2, 14-16-2, 14-19-2, 14-55-2, and 14-77- 2. From these 5 models, after training and testing, the results show that the best architectural model is 14-19-2 (14 is the input layer, 19 is the number of neurons in the hidden layer and 2 is the output layer). The accuracy level of the architectural model for semester 1 and semester 2 is 75% with MSE values of 0.00130797 and 0.00388535.

References

R. Maiyuriska, “Penerapan Jaringan Syaraf Tiruan dengan Algoritma Backpropagation dalam Memprediksi Hasil Panen Gabah Padi,” Jurnal Informatika Ekonomi Bisnis, vol. 4, pp. 28–33, 2022.

E. Irawan, M. Zarlis, and E. B. Nababan, “Analisis Penambahan Nilai Momentum Pada Prediksi Produktivitas Kelapa Sawit Menggunakan Backpropagation,” InfoTekJar (Jurnal Nasional Informatika dan Teknologi Jaringan), vol. 1, no. 2, pp. 84–89, 2017.

N. L. W. S. R. Ginantra et al., “Performance One-step secant Training Method for Forecasting Cases,” Journal of Physics: Conference Series, vol. 1933, no. 1, pp. 1–8, 2021.

M. Najwa, B. Warsito, and D. Ispriyanti, “Pemodelan Jaringan syaraf Tiruan Dengan Algoritma One Step Secant Backpropagation Dalam Return Kurs Rupiah Terhadap Dolar Amerika Aerikat,” Jurnal Gaussian, vol. 6, no. 1, pp. 61–70, 2017.

C. S. T. Columns, “A Novel Hybrid Model Based on a Feedforward Neural Network and One Step Secant Algorithm for Prediction of Load-Bearing Capacity of Rectangular.”

Badan Pusat Statistik Indonesia, “Pengangguran Terbuka Menurut Pendidikan Tertinggi yang Ditamatkan (Orang),” www.bps.go.id, 2021. .

S. Dewi, “Pengangguran Terbuka : Kasus Di Indonesia,” Jurnal Mitra Manajemen, vol. 9, no. 1, pp. 43–46, 2017.

R. C. Rambe, P. H. Prihanto, and H. Hardiani, “Analisis faktor-faktor yang mempengaruhi pengangguran terbuka di Provinsi Jambi,” e-Jurnal Ekonomi Sumberdaya dan Lingkungan, vol. 8, no. 1, pp. 54–67, 2019.

G. Dainty, J. Roring, A. G. Kumenaung, A. L. C. P. Lapian, and U. S. Ratulangi, “PENGARUH PERTUMBUHAN EKONOMI DAN PENDIDIKAN TERHADAP TINGKAT PENGANGGURAN TERBUKA ( TPT ) 4 KOTA DI PROVINSI SULAWESI UTARA PENDAHULUAN Latar Belakang Pengangguran merupakan masalah yang kompleks karena mempengaruhi dan juga dipengaruhi oleh banyak faktor,” vol. 20, no. 4, pp. 70–87, 2020.

W. Saputra, J. T. Hardinata, and A. Wanto, “Penerapan Metode Resilient dalam Menentukan Model Arsitektur Terbaik untuk Prediksi Pengangguran Terbuka di Indonesia,” Seminar Nasional Aplikasi Teknologi Informasi (SNATi), pp. 21–29, 2019.

G. W. Bhawika et al., “Implementation of ANN for Predicting the Percentage of Illiteracy in Indonesia by Age Group,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.

A. Wanto et al., “Analysis of the Backpropagation Algorithm in Viewing Import Value Development Levels Based on Main Country of Origin,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.

E. Siregar, H. Mawengkang, E. B. Nababan, and A. Wanto, “Analysis of Backpropagation Method with Sigmoid Bipolar and Linear Function in Prediction of Population Growth,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.

M. K. Z. Sormin, P. Sihombing, A. Amalia, A. Wanto, D. Hartama, and D. M. Chan, “Predictions of World Population Life Expectancy Using Cyclical Order Weight / Bias,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.

A. Wanto et al., “Analysis of the Accuracy Batch Training Method in Viewing Indonesian Fisheries Cultivation Company Development,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.

Y. Andriani, H. Silitonga, and A. Wanto, “Analisis Jaringan Syaraf Tiruan untuk prediksi volume ekspor dan impor migas di Indonesia,” Register: Jurnal Ilmiah Teknologi Sistem Informasi, vol. 4, no. 1, pp. 30–40, 2018.

W. Saputra, J. T. Hardinata, and A. Wanto, “Implementation of Resilient Methods to Predict Open Unemployment in Indonesia According to Higher Education Completed,” JITE (Journal of Informatics and Telecommunication Engineering), vol. 3, no. 1, pp. 163–174, 2019.

S. Setti and A. Wanto, “Analysis of Backpropagation Algorithm in Predicting the Most Number of Internet Users in the World,” JOIN (Jurnal Online Informatika), vol. 3, no. 2, pp. 110–115, 2018.

Downloads

Published

2022-10-18

How to Cite

Azhami, I., Irawan, E., & Suhendro, D. (2022). Implementation of One-step Secant Algorithm for Forecasting Open Unemployment by Highest Educational Graduate. JOMLAI: Journal of Machine Learning and Artificial Intelligence, 1(3), 219–228. https://doi.org/10.55123/jomlai.v1i3.946

Issue

Section

Articles