Implementation of the Weighted Moving Average Method for Forecasting the Production of Manila Duck meat in Indonesia
DOI:
https://doi.org/10.55123/jomlai.v1i3.916Keywords:
Manila Duck, Forecasting, Weighted Moving AverageAbstract
Manila duck is a waterfowl originating from South America, through the Philippines this type of duck entered Indonesia and has a large distribution in various regions of Indonesia the production on manila duck meat and from 2019-2020 has decreased due to the covid-19 pandemic which resulted in economic difficulties. And the lack of demand from restaurants and households so that the amount of production decrease. However, in 2020-2021 production will increase due to the relaxation from the previous pandemic and the demand and marketing has increased to that the number of production has increased from the previous year. The Weighted Moving Average method is a method used to determine the latest trend with a moving average value. The purpose of this study was to analyses the amount of production of manila duck meat in solving the problem. The result obtained with the smallest error percentage are at F128 in the province of North Maluku with MAPE value of 0,003 or equal to 0,3% with a bias of -0,25, MAD 0,25, MSE 0,06, with a forecasting value of 83,29 which is close to the original data, namely 83,04 so that the forecast value for 2022 is 83,24 tons.
References
R. R. Depawole and M. A. Sudarma, “Pengaruh Pemberian Level Protein Berbeda terhadap Performans Produksi Itik Umur 2-10 Minggu di Sumba Timur,” Jurnal Sain Peternakan Indonesia, vol. 15, no. 3, pp. 320–326, 2020.
J. Anugrah and D. Lestari, “‘ Strategi Ketahanan Pangan Masa New Normal Covid-19 ’ Potensi Ternak Entok ( Cairina Moschata ) Sebagai Sumber Daging Alternatif Dalam Mendukung Ketahanan Pangan Nasional,” vol. 4, no. 1, pp. 479–490, 2020.
A. A. Susila and M. Rofi’i, “Potensi Usaha Ternak Itik Pedaging Dalam Meningkatkan Pendapatan Masyarakat Desa Selokgondang,” Iqtishodiyah : Jurnal Ekonomi dan Bisnis Islam, vol. 6, no. 2, pp. 109–133, 2020.
BPS, “Produksi Daging Itik/Itik Manila Menurut Provinsi (Ton),” Badan Pusat Statistik Indonesia, 2021. [Online]. Available: https://www.bps.go.id/indicator/24/489/1/produksi-daging-itik-itik-manila-menurut-provinsi.html. [Accessed: 09-Aug-2021].
V. V. Sianipar, A. Wanto, and M. Safii, “Decision Support System for Determination of Village Fund Allocation Using AHP Method,” The IJICS (International Journal of Informatics and Computer Science) ISSN, vol. 4, no. 1, pp. 20–28, 2020.
R. Simarmata, R. W. Sembiring, R. Dewi, A. Wanto, and E. Desiana, “Penentuan Masyarakat Penerima Bantuan Perbaikan Rumah di Kecamatan Siantar Barat Menggunakan Metode ELECTRE,” Journal of Computer System and Informatics (JoSYC), vol. 1, no. 2, pp. 68–75, 2020.
R. Watrianthos, W. A. Ritonga, A. Rengganis, A. Wanto, and M. Isa Indrawan, “Implementation of PROMETHEE-GAIA Method for Lecturer Performance Evaluation,” Journal of Physics: Conference Series, vol. 1933, no. 1, p. 012067, 2021.
S. R. Ningsih, D. Hartama, A. Wanto, I. Parlina, and Solikhun, “Penerapan Sistem Pendukung Keputusan Pada Pemilihan Objek Wisata di Simalungun,” in Seminar Nasional Teknologi Komputer & Sains (SAINTEKS), 2019, pp. 731–735.
N. Nasution, G. W. Bhawika, A. Wanto, N. L. W. S. R. Ginantra, and T. Afriliansyah, “Smart City Recommendations Using the TOPSIS Method,” IOP Conference Series: Materials Science and Engineering, vol. 846, no. 1, pp. 1–6, 2020.
R. A. Hutasoit, S. Solikhun, and A. Wanto, “Analisa Pemilihan Barista dengan Menggunakan Metode TOPSIS (Studi Kasus: Mo Coffee),” KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), vol. 2, no. 1, pp. 256–262, 2018.
I. M. Muhamad, S. A. Wardana, A. Wanto, and A. P. Windarto, “Algoritma Machine Learning untuk penentuan Model Prediksi Produksi Telur Ayam Petelur di Sumatera,” Journal of Informatics, Electrical and Electronics Engineering, vol. 1, no. 4, pp. 126–134, 2022.
M. Mahendra, R. C. Telaumbanua, A. Wanto, and A. P. Windarto, “Akurasi Prediksi Ekspor Tanaman Obat , Aromatik dan Rempah-Rempah Menggunakan Machine Learning,” KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 2, no. 6, pp. 207–215, 2022.
R. Puspadini, A. Wanto, and N. Arminarahmah, “Penerapan ML dengan Teknik Bayesian Regulation untuk Peramalan,” Journal of Computer System and Informatics (JoSYC), vol. 3, no. 3, pp. 147–155, 2022.
N. L. W. S. R. Ginantra, A. D. GS, S. Andini, and A. Wanto, “Pemanfaatan Algoritma Fletcher-Reeves untuk Penentuan Model Prediksi Harga Nilai Ekspor Menurut Golongan SITC,” Building of Informatics, Technology and Science (BITS), vol. 3, no. 4, pp. 679–685, 2022.
N. Arminarahmah, S. D. Rizki, O. A. Putra, U. Islam, K. Muhammad, and A. Al, “Performance Analysis and Model Determination for Forecasting Aluminum Imports Using the Powell-Beale Algorithm,” IJISTECH (International Journal of Information System & Technology), vol. 5, no. 5, pp. 624–632, 2022.
N. L. W. S. R. Ginantra et al., “Performance One-step secant Training Method for Forecasting Cases,” Journal of Physics: Conference Series, vol. 1933, no. 1, pp. 1–8, 2021.
A. Perdana, S. Defit, and A. Wanto, “Optimalisasi Parameter dengan Cross Validation dan Neural Back-propagation Pada Model Prediksi Pertumbuhan Industri Mikro dan Kecil,” Jurnal Sistem Informasi Bisnis, vol. 01, no. 11, pp. 34–42, 2021.
N. L. W. S. R. Ginantra, M. A. Hanafiah, A. Wanto, R. Winanjaya, and H. Okprana, “Utilization of the Batch Training Method for Predicting Natural Disasters and Their Impacts,” IOP Conf. Series: Materials Science and Engineering, vol. 1071, no. 1, p. 012022, 2021.
A. Wanto, S. Defit, and A. P. Windarto, “Algoritma Fungsi Perlatihan pada Machine Learning berbasis ANN untuk Peramalan Fenomena Bencana,” RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 2, pp. 254–264, 2021.
V. V. Utari, A. Wanto, I. Gunawan, and Z. M. Nasution, “Prediksi Hasil Produksi Kelapa Sawit PTPN IV Bahjambi Menggunakan Algoritma Backpropagation,” Journal of Computer System and Informatics (JoSYC, vol. 2, no. 3, pp. 271–279, 2021.
N. Arminarahmah, A. D. GS, G. W. Bhawika, M. P. Dewi, and A. Wanto, “Mapping the Spread of Covid-19 in Asia Using Data Mining X-Means Algorithms,” IOP Conf. Series: Materials Science and Engineering, vol. 1071, no. 1, p. 012018, 2021.
J. Hutagalung, N. L. W. S. R. Ginantra, G. W. Bhawika, W. G. S. Parwita, A. Wanto, and P. D. Panjaitan, “COVID-19 Cases and Deaths in Southeast Asia Clustering using K-Means Algorithm,” Journal of Physics: Conference Series, vol. 1783, no. 1, p. 012027, 2021.
N. A. Febriyati, A. D. GS, and A. Wanto, “GRDP Growth Rate Clustering in Surabaya City uses the K- Means Algorithm,” International Journal of Information System & Technology, vol. 3, no. 2, pp. 276–283, 2020.
M. A. Hanafiah and A. Wanto, “Implementation of Data Mining Algorithms for Grouping Poverty Lines by District/City in North Sumatra,” International Journal of Information System & Technology, vol. 3, no. 2, pp. 315–322, 2020.
T. H. Sinaga, A. Wanto, I. Gunawan, S. Sumarno, and Z. M. Nasution, “Implementation of Data Mining Using C4.5 Algorithm on Customer Satisfaction in Tirta Lihou PDAM,” Journal of Computer Networks, Architecture, and High-Performance Computing, vol. 3, no. 1, pp. 9–20, 2021.
A. Wanto et al., Data Mining : Algoritma dan Implementasi. Yayasan Kita Menulis, 2020.
W. T. C. Gultom, A. Wanto, I. Gunawan, M. R. Lubis, and I. O. Kirana, “Application ofThe Levenberg Marquardt Method In Predict The Amount of Criminality in Pematangsiantar City,” Journal of Computer Networks, Architecture, and High-Performance Computing, vol. 3, no. 1, pp. 21–29, 2021.
A. Nasution, “Forecasting Produksi Karet Menggunakan,” vol. 9986, no. September, 2018.
Z. Silvya, A. Zakir, D. Irwan, P. Studi, S. Informasi, and U. H. Medan, “PENERAPAN METODE WEIGHTED MOVING AVERAGE UNTUK PERAMALAN,” vol. 8, no. 2, pp. 59–64, 2020.
M. Latif and R. Herdiansyah, “Peramalan Persediaan Barang Menggunakan Metode Weighted Moving Average dan Metode Double Exponential Smoothing,” vol. 3, no. 2, pp. 137–142, 2022.
“Produksi Daging Itik_Itik Manila menurut Provinsi.” .
D. Untuk, M. Salah, S. Syarat, M. Gelar, S. Komputer, and P. Studi, “Diajukan Untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Komputer Program Studi Informatika,” 2022.
F. Reba, A. Sroyer, S. M. Yokhu, and A. Langowuyo, “Perbandingan Metode Weighted Moving Average dan Single Exponential Smoothing Angka Partisipasi Sekolah Wilayah Adat , Papua,” vol. 18, no. 2, pp. 161–168, 2021.
J. T. Informatika, M. Weighted, M. Average, W. M. A. Pada, and T. Barang, “Jurnal Teknik Informatika, Vol. 13, No. 3, Agustus 2021,” vol. 13, no. 3, pp. 1–9, 2021.
A. K. Ekonomi and P. O. M. F. O. R. Windows, “Aplikasi komputer ekonomi pom for windows,” 2013.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Diana Pratiwi, Riki Winanjaya, Irawan Irawan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2022 The authors. Published by Yayasan Literasi Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
The author(s) whose article is published in the JOMLAI journal attain the copyright for their article and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. By submitting the manuscript to JOMLAI, the author(s) agree with this policy. No special document approval is required.
The author(s) guarantee that:their article is original, written by the mentioned author(s),
- has never been published before,
- does not contain statements that violate the law, and
- does not violate the rights of others, is subject to copyright held exclusively by the author(s), and is free from the rights of third parties, and that the necessary written permission to quote from other sources has been obtained by the author(s).
The author(s) retain all rights to the published work, such as (but not limited to) the following rights:
- Copyright and other proprietary rights related to the article, such as patents,
- The right to use the substance of the article in its own future works, including lectures and books,
- The right to reproduce the article for its own purposes,
- The right to archive all versions of the article in any repository, and
- The right to enter into separate additional contractual arrangements for the non-exclusive distribution of published versions of the article (for example, posting them to institutional repositories or publishing them in a book), acknowledging its initial publication in this journal (JOMLAI: Journal of Machine Learning and Artificial Intelligence).
Suppose the article was prepared jointly by more than one author. Each author submitting the manuscript warrants that all co-authors have given their permission to agree to copyright and license notices (agreements) on their behalf and notify co-authors of the terms of this policy. JOMLAI will not be held responsible for anything that may arise because of the writer's internal dispute. JOMLAI will only communicate with correspondence authors.
Authors should also understand that their articles (and any additional files, including data sets, and analysis/computation data) will become publicly available once published. The license of published articles (and additional data) will be governed by a Creative Commons Attribution-ShareAlike 4.0 International License. JOMLAI allows users to copy, distribute, display and perform work under license. Users need to attribute the author(s) and JOMLAI to distribute works in journals and other publication media. Unless otherwise stated, the author(s) is a public entity as soon as the article is published



















