Application of Artificial Neural Networks to Predict Exports of Four-Wheeled Vehicles by Destination Country

Authors

  • Ema Meyliza STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Eka Irawan STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Dedi Suhendro STIKOM Tunas Bangsa, Pematangsiantar, Indonesia

DOI:

https://doi.org/10.55123/jomlai.v1i3.914

Keywords:

Motor Vehicle, Prediction, Back-propagation, Export, Country of Destination

Abstract

Motorized vehicles are vehicles that are energized through machines and used for land transportation,, as well as movement through technical equipment in the form of electric motors and other tools that have the function of converting an energy source into power to drive the vehicle. This study aims to determine the results of the predicted number of four-wheeled vehicle exports by destination country in the years to come. The research data used is data on exports of four-wheeled motor vehicles by destination country for 2012-2020. The algorithm used in this research is an artificial neural network with Back-propagation method. The best architectural model used in this research is architect 4-4-1 with an accuracy rate of 82% epoch of 2261 iterations and MSE of 0.0081876. So it can be concluded that the model can be used to predict export data for four-wheeled vehicles by destination country.

References

I. N. Kusumawati and A. N. Rachman, “Analisis Pengaruh Wajib Pajak Dalam Membayar Pajak Kendaraan Bermotor,” vol. 11, no. 1, pp. 1–20, 2021.

Rusmansyah, E. Rumapea, Poningsih, and Solikhun, “Analisis Jaringan Syaraf Tiruan Dalam Memprediksi Data Ekspor Ikan Tongkol / Tuna Menurut Negara Tujuan Utama,” pp. 232–235, 2020.

A. Syamhalim, K. Kusrini, and A. B. Prasetyo, “Prediksi Jumlah Kendaraan Di Kota Tangerang Selatan Dengan Metode Algoritma Genetik,” jurnal BIT, vol. 18, no. 1, pp. 35–40, 2021.

S. Hamza, “Implementasi Data Mining Untuk Memprediksi Jumlah Peredaran Kendaraan Roda Empat Di Kota Ternate Menggunakan Metode C.45,” vol. 12, pp. 52–56, 2019.

Nurhayati, M. B. Sibuea, D. Kusbiantoro, M. Silaban, and A. Wanto, “Implementasi Algoritma Resilient untuk Prediksi Potensi Produksi Bawang Merah di Indonesia,” Building of Informatics, Technology and Science (BITS), vol. 4, no. 2, pp. 1051–1060, 2022.

I. M. Muhamad, S. A. Wardana, A. Wanto, and A. P. Windarto, “Algoritma Machine Learning untuk penentuan Model Prediksi Produksi Telur Ayam Petelur di Sumatera,” Journal of Informatics, Electrical and Electronics Engineering, vol. 1, no. 4, pp. 126–134, 2022.

M. Mahendra, R. C. Telaumbanua, A. Wanto, and A. P. Windarto, “Akurasi Prediksi Ekspor Tanaman Obat , Aromatik dan Rempah-Rempah Menggunakan Machine Learning,” KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 2, no. 6, pp. 207–215, 2022.

R. Puspadini, A. Wanto, and N. Arminarahmah, “Penerapan ML dengan Teknik Bayesian Regulation untuk Peramalan,” Journal of Computer System and Informatics (JoSYC), vol. 3, no. 3, pp. 147–155, 2022.

N. L. W. S. R. Ginantra, A. D. GS, S. Andini, and A. Wanto, “Pemanfaatan Algoritma Fletcher-Reeves untuk Penentuan Model Prediksi Harga Nilai Ekspor Menurut Golongan SITC,” Building of Informatics, Technology and Science (BITS), vol. 3, no. 4, pp. 679–685, 2022.

N. Arminarahmah, S. D. Rizki, O. A. Putra, U. Islam, K. Muhammad, and A. Al, “Performance Analysis and Model Determination for Forecasting Aluminum Imports Using the Powell-Beale Algorithm,” IJISTECH (International Journal of Information System & Technology), vol. 5, no. 5, pp. 624–632, 2022.

A. Wanto, S. Defit, and A. P. Windarto, “Algoritma Fungsi Perlatihan pada Machine Learning berbasis ANN untuk Peramalan Fenomena Bencana,” RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 2, pp. 254–264, 2021.

R. Sinaga, M. M. Sitomorang, D. Setiawan, A. Wanto, and A. P. Windarto, “Akurasi Algoritma Fletcher-Reeves untuk Prediksi Ekspor Karet Remah Berdasarkan Negara Tujuan Utama,” Journal of Informatics Management and Information Technology, vol. 2, no. 3, pp. 91–99, 2022.

G. W. Bhawika et al., “Implementation of ANN for Predicting the Percentage of Illiteracy in Indonesia by Age Group,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.

A. Wanto et al., “Analysis of the Backpropagation Algorithm in Viewing Import Value Development Levels Based on Main Country of Origin,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.

E. Siregar, H. Mawengkang, E. B. Nababan, and A. Wanto, “Analysis of Backpropagation Method with Sigmoid Bipolar and Linear Function in Prediction of Population Growth,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.

M. K. Z. Sormin, P. Sihombing, A. Amalia, A. Wanto, D. Hartama, and D. M. Chan, “Predictions of World Population Life Expectancy Using Cyclical Order Weight / Bias,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.

A. Wanto et al., “Analysis of the Accuracy Batch Training Method in Viewing Indonesian Fisheries Cultivation Company Development,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.

Y. Andriani, H. Silitonga, and A. Wanto, “Analisis Jaringan Syaraf Tiruan untuk prediksi volume ekspor dan impor migas di Indonesia,” Register: Jurnal Ilmiah Teknologi Sistem Informasi, vol. 4, no. 1, pp. 30–40, 2018.

W. Saputra, J. T. Hardinata, and A. Wanto, “Implementation of Resilient Methods to Predict Open Unemployment in Indonesia According to Higher Education Completed,” JITE (Journal of Informatics and Telecommunication Engineering), vol. 3, no. 1, pp. 163–174, 2019.

N. L. W. S. R. Ginantra et al., “Performance One-step secant Training Method for Forecasting Cases,” Journal of Physics: Conference Series, vol. 1933, no. 1, pp. 1–8, 2021.

Downloads

Published

2022-10-18

How to Cite

Meyliza, E., Irawan, E., & Suhendro, D. (2022). Application of Artificial Neural Networks to Predict Exports of Four-Wheeled Vehicles by Destination Country. JOMLAI: Journal of Machine Learning and Artificial Intelligence, 1(3), 239–244. https://doi.org/10.55123/jomlai.v1i3.914

Issue

Section

Articles