Identification of Rice Plant Diseases Through Leaf Image Using DenseNet 201

Identifikasi Penyakit Tanaman Padi Melalui Citra Daun Menggunakan DenseNet 201

Authors

  • Primatua Sitompul Universitas Potensi Utama, Medan, Indonesia
  • Harly Okprana STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Annas Prasetio Universitas Potensi Utama, Medan, Indonesia

DOI:

https://doi.org/10.55123/jomlai.v1i2.889

Abstract

Indonesia as an agrarian country with the largest population uses rice as a staple food is depending on rice production. The lack of quantity and quality of production that often occurs is caused by disease attacks on plants that are detected too late. This is due to the lack of agricultural extension workers who help farmers in dealing with plant diseases. This study conducted an experiment on rice plant diseases based on leaf imagery using a dataset that has four classifications of leaf conditions of rice plants, namely healthy, brown spot, hispa, and leaf blast. The results obtained are quite good, namely, the accuracy value of the training data is 88.4% and 82.99% in data testing using the Densely Connected Convolutional Networks (DenseNet)-201 architecture as. From the results of the key research, DenseNet201 is quite suitable to be used to carry out diseases in rice plants so that the types of diseases that attack can be identified and given early. Thus food security can be maintained and not cause losses due to crop failures that harm farmers.

References

A. A. Fardhani, D. Insani, N. Simanjuntak, and A. Wanto, “Prediksi Harga Eceran Beras Di Pasar Tradisional Di 33 Kota Di Indonesia Menggunakan Algoritma Backpropagation,” Jurnal Infomedia, vol. 3, no. 1, pp. 25–30, 2018.

Sudirman, A. P. Windarto, and A. Wanto, “Data mining tools | rapidminer: K-means method on clustering of rice crops by province as efforts to stabilize food crops in Indonesia,” IOP Conference Series: Materials Science and Engineering, vol. 420, no. 1, pp. 1–8, 2018.

J. Nijar and T. Abbas, “Faktor-faktor yang Mempengaruhi Impor Beras di Indonesia Tahun 2001-2019,” E-Journal Perdagangan Industri dan Moneter, vol. 9, no. 3, pp. 181–192, 2021.

S. Nurkasanah, A. Prasetyo, and M. B. Setyawan, “Implementasi Logika Fuzzy untuk prediksi hasil Panen Padi dengan Metode Tsukamoto,” Jurnal Rekayasa Teknologi dan Komputasi, vol. 1, no. 1, pp. 1–11, 2022.

M. A. P. Hutabarat, M. Julham, and A. Wanto, “Penerapan Algoritma Backpropagation Dalam Memprediksi Produksi Tanaman Padi Sawah Menurut Kabupaten/Kota di Sumatera Utara,” Jurnal semanTIK, vol. 4, no. 1, pp. 77–86, 2018.

Ulfah Nur Oktaviana, Ricky Hendrawan, Alfian Dwi Khoirul Annas, and Galih Wasis Wicaksono, “Klasifikasi Penyakit Padi berdasarkan Citra Daun Menggunakan Model Terlatih Resnet101,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 6, pp. 1216–1222, 2021.

S. M. Hassan and A. K. Maji, “Plant Disease Identification Using a Novel Convolutional Neural Network,” IEEE Access, vol. 10, pp. 5390–5401, 2022.

E. Anggiratih, S. Siswanti, S. K. Octaviani, and A. Sari, “Klasifikasi Penyakit Tanaman Padi Menggunakan Model Deep Learning Efficientnet B3 dengan Transfer Learning,” Jurnal Ilmiah SINUS, vol. 19, no. 1, p. 75, 2021.

I. Y. Purbasari, B. Rahmat, and C. S. Putra PN, “Detection of Rice Plant Diseases using Convolutional Neural Network,” IOP Conference Series: Materials Science and Engineering, vol. 1125, no. 1, p. 012021, 2021.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, vol. 2017-January, pp. 2261–2269, 2017.

F. Masykur, M. B. Setyawan, and K. Winangun, “Optimalisasi Epoch Pada Klasifikasi Citra Daun Tanaman Padi Menggunakan Convolutional Neural Network ( CNN ) MobileNe t Epoch Optimization on Rice Leaf Image Classification Using Convolutional Neural Network ( CNN ) MobileNet,” no. July, pp. 581–590, 2022.

“Rice Leaf Dataset.” .

N. Sakinah, T. Badriyah, and I. Syarif, “Analisis Kinerja Algoritma Mesin Pembelajaran untuk Klarifikasi Penyakit Stroke Menggunakan Citra CT Scan,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 7, no. 4, p. 833, 2020.

J. Pardede and D. A. L. Putra, “Implementasi DenseNet Untuk Mengidentifikasi Kanker Kulit Melanoma,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 6, no. 3, pp. 425–433, 2020.

M. R. Alwanda, R. P. K. Ramadhan, and D. Alamsyah, “Implementasi Metode Convolutional Neural Network Menggunakan Arsitektur LeNet-5 untuk Pengenalan Doodle,” Jurnal Algoritme, vol. 1, no. 1, pp. 45–56, 2020.

Downloads

Published

2022-09-26

How to Cite

Sitompul, P., Okprana, H., & Prasetio, A. (2022). Identification of Rice Plant Diseases Through Leaf Image Using DenseNet 201: Identifikasi Penyakit Tanaman Padi Melalui Citra Daun Menggunakan DenseNet 201. JOMLAI: Journal of Machine Learning and Artificial Intelligence, 1(2), 143–150. https://doi.org/10.55123/jomlai.v1i2.889

Issue

Section

Articles