Annual Rainfall Prediction in Indonesia Using A Hybrid Artificial Neural Network and Fuzzy Algorithm Model

Authors

  • Siti Asiah STIKOM Tunas Bangsa
  • Wanda Riana STIKOM Tunas Bangsa
  • Dika Chryston Purba STIKOM Tunas Bangsa
  • M Ilham Azharsum STIKOM Tunas Bangsa
  • Victor Asido Elyakim P STIKOM Tunas Bangsa

DOI:

https://doi.org/10.55123/jomlai.v4i2.5964

Keywords:

Hybrid Model , ANN , Fuzzy Algorithm , Rainfall Prediction , Data Uncertainty

Abstract

Rainfall is an essential meteorological parameter that affects various sectors of life. Accurately predicting rainfall has become crucial, and artificial intelligence-based models are increasingly popular in this field. Artificial Neural Networks (ANNs) have been widely used due to their ability to identify non-linear patterns in complex data. However, ANN-based predictions have limitations in optimally handling uncertainty or data variability. To address this issue, this study proposes a hybrid model that combines ANNs with fuzzy algorithms. Fuzzy algorithms are capable of managing uncertainty and providing flexible decision-making. This research proposes a hybrid model that integrates Artificial Neural Networks (ANNs) and fuzzy algorithms to predict annual rainfall based on meteorological data from 2019 to 2024. ANNs are used to detect non-linear patterns in temperature, humidity, and atmospheric pressure data, while fuzzy algorithms handle the uncertainty in input data. The model was tested using data from local meteorological stations and evaluated using MAE, RMSE, and the coefficient of determination (R²) metrics. The evaluation results show that the hybrid model achieved the best performance, with an MAE of 3.17 mm, RMSE of 3.4 mm, and R² of 0.98. These findings indicate that the combination of ANN and fuzzy logic significantly improves the accuracy of rainfall prediction compared to individual methods. This model has the potential to be applied in early warning systems and more precise climate management.

References

A. Zulfiani and C. Fauzi, “Penerapan Algorimta Backpropagation Untuk Prakiraan Cuaca Harian Dibandingkan Dengan Support Vector Machine dan Logistic Regression,” J. Media Inform. Budidarma, vol. 7, no. 3, p. 1229, 2023, doi: 10.30865/mib.v7i3.6173.

A. Izzah and R. Widyastuti, “Prediksi Harga Saham Menggunakan Improved Multiple Linear Regression untuk Pencegahan Data Outlier,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 2, no. 3, pp. 141–150, 2017, doi: 10.22219/kinetik.v2i3.268.

A. Pranajaya, R. F. Iskandar, A. Qurthobi, and Rasmid, “Peramalan Sambaran Petir Dengan Menggunakan Adaptive Neuro-Fuzzy Inference Systeem (Anfis),” e-Proceeding Eng., vol. 6, no. 2, pp. 5187–5193, 2019.

Wulandari R.A and Gernowo R, “Metode Autoregressive Integrated Moving Average (ARIMA) dan Metode Adaptive Neuro Fuzzy Inference System (ANFIS) dalam Analisis Curah Hujan,” Berk. Fis., vol. 22, no. 1, pp. 41–48, 2019.

M. I. Azhar and W. F. Mahmudy, “Prediksi Curah Hujan Menggunakan Adaptive Neuro Fuzzy Inference Sytem (ANFIS),” e-Proceeding Eng., vol. 2, no. 11, pp. 1860–1867, 2015.

M. C. C. Utomo, W. F. Mahmudy, and S. Anam, “Kombinasi Logika Fuzzy dan Jaringan Syaraf Tiruan untuk Prakiraan Curah Hujan Timeseries di Area Puspo – Jawa Timur,” J. Teknol. Inf. dan Ilmu Komput., vol. 4, no. 3, pp. 160–167, 2017, doi: 10.25126/jtiik.201743299.

I. Sofian and Y. Apriaini, “Metode Peramalan Jaringan Saraf Tiruan Menggunakan Algoritma Backpropagation (Studi Kasus Peramalan Curah Hujan Kota Palembang),” J. Mipa, vol. 40, no. 2, pp. 87–91, 2017.

“PEMODELAN TIME SERIES MENGGUNAKAN METODE LONG SHORT TERM MEMORY ( LSTM ) UNTUK MEMPREDIKSI SUHU UDARA ( Studi Kasus : Stasiun Meteorologi Maritim Paotere Makassar ) HANDAYANI PROGRAM STUDI STATISTIKA UNIVERSITAS SULAWESI BARAT TAHUN 2024,” 2024.

S. Pokhrel, “No TitleΕΛΕΝΗ,” Αγαη, vol. 15, no. 1, pp. 37–48, 2024.

N. Gunawan, T. Waras, and S. Si, KUASAI MACHINE LEARNING & COMPUTER VISION DALAM SEKEJAP.

S. Liawatimena, ARTIFICIAL INTELLIGENCE, no. May. 2023.

A. A. Akbar, Y. Darmawan, A. Wibowo, and H. K. Rahmat, “Accuracy Assessment of Monthly Rainfall Predictions using Seasonal ARIMA and Long Short-Term Memory ( LSTM ),” vol. 5, no. 2, pp. 99–114, 2024.

T. M. Bafitlhile and Z. Li, “Applicability of ε-Support Vector Machine and artificial neural network for flood forecasting in humid, semi-humid and semi-arid basins in China,” Water (Switzerland), vol. 11, no. 1, 2019, doi: 10.3390/w11010085.

Muchammad Abrori dan Amrul Hinung Prihamayu, “Aplikasi Logika Fuzzy Metode Mamdani,” Kaunia, vol. 11, no. 2, pp. 91–99, 2015.

L. E. Siahaan, R. F. Umbara, S. Si, M. Si, and Y. Sibaroni, “PREDIKSI INDEKS HARGA SAHAM DENGAN METODE GABUNGAN JARINGAN SYARAF TIRUAN DAN SUPPORT VECTOR REGRESSION,” vol. 3, no. 1, pp. 11–15, 2016.

B. Putra, D. Prayama, and H. Amnur, “Implementasi Jaringan Syaraf Tiruan untuk Prediksi Cuaca pada PLTA Sumatera Barat,” vol. 3, no. 2, pp. 36–41, 2022.

I. Wahyuni and F. A. Ahda, “Pemodelan Fuzzy Inference System Tsukamoto Untuk Prediksi Curah Hujan Studi Kasus Kota Batu,” J. Ilm. Teknol. Inf. Asia, vol. 12, no. 2, p. 115, 2018, doi: 10.32815/jitika.v12i2.260.

Y. M. Wati, F. Nhita, and M. Si, “ANALISIS ALGORITMA PREDIKSI CURAH HUJAN MENGGUNAKAN HYBRID PARTIALLY CONNECTED FEEDFORWARD NEURAL NETWORK ( PCFNN ) DAN NESTED GENETIC ALGORITHM ( GA )”.

A. A. Suryanto, “Penerapan Metode Mean Absolute Error (Mea) Dalam Algoritma Regresi Linear Untuk Prediksi Produksi Padi,” Saintekbu, vol. 11, no. 1, pp. 78–83, 2019, doi: 10.32764/saintekbu.v11i1.298.

G. J. Whitehead, “Stupid,” A Gloss. Chickens, vol. 4, no. 1, pp. 33–34, 2015, doi: 10.1515/9781400845965-016.

Downloads

Published

2025-06-20

How to Cite

Siti Asiah, Wanda Riana, Dika Chryston Purba, M Ilham Azharsum, & Victor Asido Elyakim P. (2025). Annual Rainfall Prediction in Indonesia Using A Hybrid Artificial Neural Network and Fuzzy Algorithm Model. JOMLAI: Journal of Machine Learning and Artificial Intelligence, 4(2), 99–105. https://doi.org/10.55123/jomlai.v4i2.5964

Issue

Section

Articles