Application of the Gaussian Mixture Models (GMM) Algorithm to Identify Error Patterns in Compilation
DOI:
https://doi.org/10.55123/jomlai.v4i2.5960Keywords:
Gaussian Mixture Models , Identify Error Patterns , CompilationAbstract
In software development, the compilation process is a critical step that transforms source code into executable programs. These compilation errors can vary from simple syntax errors to more complex semantic errors, which often require a lot of time and effort to identify and fix. As a result, identifying recurring error patterns in the compilation process is important to improve software development efficiency. This study aims to explore the application of GMM in identifying error patterns in the compilation process. The results of this study indicate that the value of 0.58 on the Silhouette Score indicates that the clustering performed by GMM is quite good at identifying error patterns in compilation. The clusters are divided into 3, namely, Cluster 0 may indicate types of errors that occur more quickly (possibly related to syntax errors), with fewer lines of code and lower error frequency. Cluster 1 may represent more complex and less frequent errors (e.g., linker or runtime errors), with more lines of code. Cluster 2 may contain errors with different patterns, such as higher compilation duration or more frequent error frequency.
References
R. ramadhan Rahmat, “Analisis Kompilasi Hukum Islam Pasal 84 Tentang Nusyuz Istri Perspektif Mazhab Hanafi Dan Mazhab Syafi’I,” Comp. J. Ilm. Perbandingan Maz. dan Huk., vol. 2, no. 1, pp. 54–73, 2022, doi: 10.24239/comparativa.v2i1.21.
D. Dalimunthe, K. Kunci, H. Warisan, and K. A. dan KUUHPerdata Pendahuluan, “COMPARASI PENGALIHAN HARTA HIBAH MENJADI HARTA WARISAN PERSPEKTIF KOMPILASI HUKUM ISLAM DAN KITAB UNDANG-UNDANG HUKUM PERDATA Comparation of the transfer of grant assets is inherited from the perspective of KHI and the Civil Code, in the KHI the process o,” J. Huk. Ekon., vol. 6, no. 1, pp. 13–26, 2020.
A. D. Setyoko and A. Zahra, “Perbandingan Efisiensi Proses CI/CD Multi-Lingkungan melalui Implementasi Paralel dan Berurutan,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 3, pp. 911–925, 2024, doi: 10.57152/malcom.v4i3.1334.
Y. Risyani, S. Japit, and T. Selamat, “Masalah Value Trace untuk pembacaan koding dalam Bahasa Pemrograman C,” J. Minfo Polgan, vol. 13, no. 1, pp. 600–605, 2024, doi: 10.33395/jmp.v13i1.13753.
W. Prastiwinarti et al., “Perancangan Pemanfaatan Machine Learning untuk Deteksi Cacat Kemasan Produk,” Sniv Semin. Nas. Inov. Vokasi, vol. 2, no. 1, pp. 97–102, 2023.
F. W. Atmojo et al., “ANALISIS PEMANFAATAN MACHINE LEARNING GUNA PREDIKSI INDEKS,” vol. 9, no. 2, 2024.
P. Chyan, “Segmentasi Kulit Manusia Dengan Ekstraksi Fitur Warna Dan Algoritma GMM-EM,” J. Pendidik. Teknol. Inf., no. April, pp. 151–156, 2022.
N. N. Alyarahma, G. Kholijah, and C. Sormin, “Pengelompokan Provinsi di Indonesia Menggunakan Gaussian Mixture Model Berdasarkan Indikator Kemiskinan,” vol. 6, no. 2, pp. 158–167, 2024, doi: 10.31605/jomta.v6i2.4032.
R. Adi, “Deteksi Api pada Video dengan Gaussian Mixture Model untuk Deteksi Gerakan dan Segmentasi Warna Api dalam Ruang Warna YCbCr (Telah disetujui Tim Penguji …,” Publ. Tugas Akhir S-1 PSTI FT-UNRAM, 2020.
Adek Maulidya, Khairul, Zulham Sitorus, Andysah Putera Utama Siahaan, and Muhammad Iqbal, “Analysis Of Increasing Student Service Satisfaction Using K-Means Clustering Algorithm and Gaussian Mixture Models (GMM),” Int. J. Comput. Sci. Math. Eng., vol. 3, no. 1, pp. 29–35, 2024, doi: 10.61306/ijecom.v3i1.62.
C. N. Prabiantissa and G. E. Yuliastuti, “Prediksi Pergerakan Ikan Di Pesisir Pulau Madura Menggunakan Metode Gaussian Mixture Model Dan K-Means Clustering,” J. Teknol. Inf. dan Terap., vol. 8, no. 2, pp. 121–128, 2021, doi: 10.25047/jtit.v8i2.244.
J. Riyono, S. D. Puspa, and C. E. Pujiastuti, “Simulasi Clustering Provinsi di Indonesia dalam Penyebaran Covid-19 Berdasarkan Indikator Kesehatan Masyarakat Menggunakan Algoritma Gaussian Mixture Model,” MAJAMATH J. Mat. dan Pendidik. Mat., vol. 5, no. 1, pp. 43–60, 2022.
I. A. Nafiudin, R. T. Hidayat, A. M. Putri, and A. R. Maulana, “Deteksi Jumlah Kendaraan Dengan Algoritma Gaussian Mixture Model Di Area Jalan Raya,” Method. J. Tek. Inform. dan Sist. Inf., vol. 7, no. 1, pp. 37–44, 2021, doi: 10.46880/mtk.v7i1.258.
A. Fitri and A. Fachrur, “Klasifikasi Tingkat Sengketa Pemilu 2024 di Indonesia Menggunakan Metode Gaussian Mixture Model,” no. 2022, pp. 404–416, 2024.
D. Y. Faidah, A. M. Hudzaifa, N. Theresia, and C. E. Widiantoro, “Optimalisasi Strategi Pengelompokkan Potensi Padi Sebagai Solusi Efektif Kelangkaan Beras Di Jawa Barat,” J. Lebesgue J. Ilm. Pendidik. Mat. Mat. dan Stat., vol. 5, no. 1, pp. 529–537, 2024, doi: 10.46306/lb.v5i1.592.
N. Hendrastuty, “Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Dalam Evaluasi Hasil Pembelajaran Siswa,” J. Ilm. Inform. Dan Ilmu Komput., vol. 3, no. 1, pp. 46–56, 2024, [Online]. Available: https://doi.org/10.58602/jima-ilkom.v3i1.26
G. Vardakas, I. Papakostas, and A. Likas, “Deep Clustering Using the Soft Silhouette Score: Towards Compact and Well-Separated Clusters,” 2024, [Online]. Available: http://arxiv.org/abs/2402.00608
R. Saputra and I. Purnamai, “OPTIMIZING K-MEANS ALGORITHM WITH ELBOW AND SILHOUETTE METHODS FOR NATIONAL EXAM SCORE DATA CLUSTERING,” J. Ilmu Komput. Ruru, vol. 1, pp. 1–6, 2024.
MDPI (2022). An error overbounding method based on a GMM with uncertainty estimation for dual frequency augmentation systems. Remote Sens, 14(5), 1111.
Reddit (2025). “I built a GMM from scratch… clustering SDSS data.” r/learnmachinelearning, Jan 16 2025. > “I implemented a GMM… E step, M step, and convergence criteria.”.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ayu Utari Nasution, Eko Prima Ambarita, Nurhidayanti Nurhidayanti, Heba Elsisy Fadlia, Victor Asido Elyakim P

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2022 The authors. Published by Yayasan Literasi Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
The author(s) whose article is published in the JOMLAI journal attain the copyright for their article and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. By submitting the manuscript to JOMLAI, the author(s) agree with this policy. No special document approval is required.
The author(s) guarantee that:their article is original, written by the mentioned author(s),
- has never been published before,
- does not contain statements that violate the law, and
- does not violate the rights of others, is subject to copyright held exclusively by the author(s), and is free from the rights of third parties, and that the necessary written permission to quote from other sources has been obtained by the author(s).
The author(s) retain all rights to the published work, such as (but not limited to) the following rights:
- Copyright and other proprietary rights related to the article, such as patents,
- The right to use the substance of the article in its own future works, including lectures and books,
- The right to reproduce the article for its own purposes,
- The right to archive all versions of the article in any repository, and
- The right to enter into separate additional contractual arrangements for the non-exclusive distribution of published versions of the article (for example, posting them to institutional repositories or publishing them in a book), acknowledging its initial publication in this journal (JOMLAI: Journal of Machine Learning and Artificial Intelligence).
Suppose the article was prepared jointly by more than one author. Each author submitting the manuscript warrants that all co-authors have given their permission to agree to copyright and license notices (agreements) on their behalf and notify co-authors of the terms of this policy. JOMLAI will not be held responsible for anything that may arise because of the writer's internal dispute. JOMLAI will only communicate with correspondence authors.
Authors should also understand that their articles (and any additional files, including data sets, and analysis/computation data) will become publicly available once published. The license of published articles (and additional data) will be governed by a Creative Commons Attribution-ShareAlike 4.0 International License. JOMLAI allows users to copy, distribute, display and perform work under license. Users need to attribute the author(s) and JOMLAI to distribute works in journals and other publication media. Unless otherwise stated, the author(s) is a public entity as soon as the article is published



















