Application of the Gaussian Mixture Models (GMM) Algorithm to Identify Error Patterns in Compilation

Authors

  • Ayu Utari Nasution STIKOM Tunas Bangsa
  • Eko Prima Ambarita STIKOM Tunas Bangsa
  • Nurhidayanti Nurhidayanti STIKOM Tunas Bangsa
  • Heba Elsisy Fadlia STIKOM Tunas Bangsa
  • Victor Asido Elyakim P STIKOM Tunas Bangsa

DOI:

https://doi.org/10.55123/jomlai.v4i2.5960

Keywords:

Gaussian Mixture Models , Identify Error Patterns , Compilation

Abstract

In software development, the compilation process is a critical step that transforms source code into executable programs. These compilation errors can vary from simple syntax errors to more complex semantic errors, which often require a lot of time and effort to identify and fix. As a result, identifying recurring error patterns in the compilation process is important to improve software development efficiency. This study aims to explore the application of GMM in identifying error patterns in the compilation process. The results of this study indicate that the value of 0.58 on the Silhouette Score indicates that the clustering performed by GMM is quite good at identifying error patterns in compilation. The clusters are divided into 3, namely, Cluster 0 may indicate types of errors that occur more quickly (possibly related to syntax errors), with fewer lines of code and lower error frequency. Cluster 1 may represent more complex and less frequent errors (e.g., linker or runtime errors), with more lines of code. Cluster 2 may contain errors with different patterns, such as higher compilation duration or more frequent error frequency.

References

R. ramadhan Rahmat, “Analisis Kompilasi Hukum Islam Pasal 84 Tentang Nusyuz Istri Perspektif Mazhab Hanafi Dan Mazhab Syafi’I,” Comp. J. Ilm. Perbandingan Maz. dan Huk., vol. 2, no. 1, pp. 54–73, 2022, doi: 10.24239/comparativa.v2i1.21.

D. Dalimunthe, K. Kunci, H. Warisan, and K. A. dan KUUHPerdata Pendahuluan, “COMPARASI PENGALIHAN HARTA HIBAH MENJADI HARTA WARISAN PERSPEKTIF KOMPILASI HUKUM ISLAM DAN KITAB UNDANG-UNDANG HUKUM PERDATA Comparation of the transfer of grant assets is inherited from the perspective of KHI and the Civil Code, in the KHI the process o,” J. Huk. Ekon., vol. 6, no. 1, pp. 13–26, 2020.

A. D. Setyoko and A. Zahra, “Perbandingan Efisiensi Proses CI/CD Multi-Lingkungan melalui Implementasi Paralel dan Berurutan,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 3, pp. 911–925, 2024, doi: 10.57152/malcom.v4i3.1334.

Y. Risyani, S. Japit, and T. Selamat, “Masalah Value Trace untuk pembacaan koding dalam Bahasa Pemrograman C,” J. Minfo Polgan, vol. 13, no. 1, pp. 600–605, 2024, doi: 10.33395/jmp.v13i1.13753.

W. Prastiwinarti et al., “Perancangan Pemanfaatan Machine Learning untuk Deteksi Cacat Kemasan Produk,” Sniv Semin. Nas. Inov. Vokasi, vol. 2, no. 1, pp. 97–102, 2023.

F. W. Atmojo et al., “ANALISIS PEMANFAATAN MACHINE LEARNING GUNA PREDIKSI INDEKS,” vol. 9, no. 2, 2024.

P. Chyan, “Segmentasi Kulit Manusia Dengan Ekstraksi Fitur Warna Dan Algoritma GMM-EM,” J. Pendidik. Teknol. Inf., no. April, pp. 151–156, 2022.

N. N. Alyarahma, G. Kholijah, and C. Sormin, “Pengelompokan Provinsi di Indonesia Menggunakan Gaussian Mixture Model Berdasarkan Indikator Kemiskinan,” vol. 6, no. 2, pp. 158–167, 2024, doi: 10.31605/jomta.v6i2.4032.

R. Adi, “Deteksi Api pada Video dengan Gaussian Mixture Model untuk Deteksi Gerakan dan Segmentasi Warna Api dalam Ruang Warna YCbCr (Telah disetujui Tim Penguji …,” Publ. Tugas Akhir S-1 PSTI FT-UNRAM, 2020.

Adek Maulidya, Khairul, Zulham Sitorus, Andysah Putera Utama Siahaan, and Muhammad Iqbal, “Analysis Of Increasing Student Service Satisfaction Using K-Means Clustering Algorithm and Gaussian Mixture Models (GMM),” Int. J. Comput. Sci. Math. Eng., vol. 3, no. 1, pp. 29–35, 2024, doi: 10.61306/ijecom.v3i1.62.

C. N. Prabiantissa and G. E. Yuliastuti, “Prediksi Pergerakan Ikan Di Pesisir Pulau Madura Menggunakan Metode Gaussian Mixture Model Dan K-Means Clustering,” J. Teknol. Inf. dan Terap., vol. 8, no. 2, pp. 121–128, 2021, doi: 10.25047/jtit.v8i2.244.

J. Riyono, S. D. Puspa, and C. E. Pujiastuti, “Simulasi Clustering Provinsi di Indonesia dalam Penyebaran Covid-19 Berdasarkan Indikator Kesehatan Masyarakat Menggunakan Algoritma Gaussian Mixture Model,” MAJAMATH J. Mat. dan Pendidik. Mat., vol. 5, no. 1, pp. 43–60, 2022.

I. A. Nafiudin, R. T. Hidayat, A. M. Putri, and A. R. Maulana, “Deteksi Jumlah Kendaraan Dengan Algoritma Gaussian Mixture Model Di Area Jalan Raya,” Method. J. Tek. Inform. dan Sist. Inf., vol. 7, no. 1, pp. 37–44, 2021, doi: 10.46880/mtk.v7i1.258.

A. Fitri and A. Fachrur, “Klasifikasi Tingkat Sengketa Pemilu 2024 di Indonesia Menggunakan Metode Gaussian Mixture Model,” no. 2022, pp. 404–416, 2024.

D. Y. Faidah, A. M. Hudzaifa, N. Theresia, and C. E. Widiantoro, “Optimalisasi Strategi Pengelompokkan Potensi Padi Sebagai Solusi Efektif Kelangkaan Beras Di Jawa Barat,” J. Lebesgue J. Ilm. Pendidik. Mat. Mat. dan Stat., vol. 5, no. 1, pp. 529–537, 2024, doi: 10.46306/lb.v5i1.592.

N. Hendrastuty, “Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Dalam Evaluasi Hasil Pembelajaran Siswa,” J. Ilm. Inform. Dan Ilmu Komput., vol. 3, no. 1, pp. 46–56, 2024, [Online]. Available: https://doi.org/10.58602/jima-ilkom.v3i1.26

G. Vardakas, I. Papakostas, and A. Likas, “Deep Clustering Using the Soft Silhouette Score: Towards Compact and Well-Separated Clusters,” 2024, [Online]. Available: http://arxiv.org/abs/2402.00608

R. Saputra and I. Purnamai, “OPTIMIZING K-MEANS ALGORITHM WITH ELBOW AND SILHOUETTE METHODS FOR NATIONAL EXAM SCORE DATA CLUSTERING,” J. Ilmu Komput. Ruru, vol. 1, pp. 1–6, 2024.

MDPI (2022). An error overbounding method based on a GMM with uncertainty estimation for dual frequency augmentation systems. Remote Sens, 14(5), 1111.

Reddit (2025). “I built a GMM from scratch… clustering SDSS data.” r/learnmachinelearning, Jan 16 2025. > “I implemented a GMM… E step, M step, and convergence criteria.”.

Downloads

Published

2025-06-20

How to Cite

Ayu Utari Nasution, Eko Prima Ambarita, Nurhidayanti, N., Heba Elsisy Fadlia, & Victor Asido Elyakim P. (2025). Application of the Gaussian Mixture Models (GMM) Algorithm to Identify Error Patterns in Compilation. JOMLAI: Journal of Machine Learning and Artificial Intelligence, 4(2), 88–98. https://doi.org/10.55123/jomlai.v4i2.5960

Issue

Section

Articles