Analysis of Airline Passenger Satisfaction Using the Rough Set Method

Authors

  • Alisa Putri Amanda Nasution STIKOM Tunas Bangsa
  • Auralia Izmi STIKOM Tunas Bangsa
  • Aprillya Zahra Iswandy Lubis STIKOM Tunas Bangsa
  • Haya Atiqah Tampubolon STIKOM Tunas Bangsa
  • Victor Asido Elyakim P STIKOM Tunas Bangsa

DOI:

https://doi.org/10.55123/jomlai.v4i3.5946

Keywords:

Customer Satisfaction , Airlines , Rough Set, Data Analysis, Service Quality

Abstract

This study analyzes airline passenger satisfaction using the Rough Set method, an effective approach in handling complex data without requiring additional information such as probability. The main factors influencing customer satisfaction are identified based on data collected through questionnaires and analyzed using the attribute reduction method. The results show that flight punctuality, cabin crew service quality, and flight class type have a significant influence on customer satisfaction. From the survey results, 72% of respondents stated that they were satisfied, 18% were quite satisfied, and 10% were dissatisfied, with dissatisfaction generally related to flight delays and lack of comfortable facilities. The application of the Rough Set method has been proven to be able to identify passenger satisfaction patterns more accurately, so that it can be used by airlines to improve their service strategies.

References

A. S. Khadijah and A. F. Waluyo, “Implementasi Algoritma FP Growth Untuk Menganalisis Pola Pembelian Konsumen Balcos Compound,” pp. 2450–2463.

I. D. Ayu, I. Saraswati, I. M. Agus, O. Gunawan, I. M. Agus, and W. Putra, “Analisis Keranjang Belanja pada Data Ritel Non- Toko menggunakan Algoritma FP-Growth,” pp. 1692–1704, 2023.

M. Hafizh, T. Novita, D. Guswandi, H. Syahputra, and L. Mayola, “Implementasi Data Mining Menggunakan Algoritma Fp-Growth Untuk Menganalisa Transaksi Penjualan Ekspor Online,” J. Teknol. Dan Sist. Inf. Bisnis, vol. 5, no. 3, pp. 242–249, 2023, doi: 10.47233/jteksis.v5i3.847.

M. Arif Saifudin, H. Endah Wahanani, and A. Junaidi, “Implementasi Algoritma Asosiasi Fp-Growth Dan Klasifikasi K-Means Terhadap Pola Pembelian Konsumen Di Marketplace Shopee,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 1, pp. 764–771, 2024, doi: 10.36040/jati.v8i1.8848.

A. Fitriyah, K. Kaslani, E. Tohidi, M. Mulyawan, and F. Fathurrohman, “Optimasi Pola Pembelian Toko Sembako Dengan Algoritma Fp-Growth,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 1, pp. 1129–1136, 2024, doi: 10.36040/jati.v8i1.8435.

J. Jafar and N. Rahaningsih, “Menentukan Pola Reservasi Hotel Dengan Algoritma Fp-Growth,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, pp. 540–546, 2023, doi: 10.36040/jati.v7i1.6402.

Rhayatun Aviqah, A. Muhammad, and E. P. W. Mandala, “Penerapan Metode FP-Growth Dalam Optimalisasi Bisnis Retail,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 4, no. 3, pp. 821–831, 2024, doi: 10.37859/coscitech.v4i3.5487.

P. Nanda, P. Dewi, D. Sujadi, and U. Triatma Mulya, “Pengaruh Kualitas Pelayanan Terhadap Kepuasan Pelanggan Dalam Menggunakan Maskapai Garuda Indonesia Di Denpasar,” J. Res. Manag. (JARMA, vol. 4, no. 1, pp. 37–49, 2022.

R. Destriyanah, K. Kaslani, E. Wahyudin, G. Dwilestari, and M. Mulyawan, “Penerapan Algoritma Fp-Growth Untuk Menentukan Pola Pembelian Makanan Di Warmindo,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 2, pp. 2159–2165, 2024, doi: 10.36040/jati.v8i2.8969.

I. Juwita and I. Ali, “Penerapan Pola Penjualan Dengan Menggunakan Metode Algoritma Asosiasi Fp-Growth Bertujuan Untuk Meningkatkan Penjualan Kopi Di Point Coffee,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 2, pp. 1600–1607, 2024, doi: 10.36040/jati.v8i2.9025.

N. Asih and M. Martanto, “Penerapan Data Mining Pada Transaksi Penjualan Untuk Menentukan Pola Pembelian Produk Menggunakan Algoritma Fp-Growth,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 2, pp. 1425–1431, 2024, doi: 10.36040/jati.v8i2.8961.

D. S. Nugroho, N. Islahudin, V. Normasari, and S. Z. Al Hakiim, “Penerapan Market Basket Analysis (Mba) Data Mining Menggunakan Metode Asosiasi Appriori Dan Fp-Growth Pada Wan Caffeine Addict Yogyakarta,” JISI J. Integr. Sist. Ind., vol. 11, no. 1, p. 121, 2024, doi: 10.24853/jisi.11.1.121-134.

A. V. Al-haq, A. Fidela, W. Audiana, and Z. U. Hani, “Jurnal JTIK ( Jurnal Teknologi Informasi dan Komunikasi ) Penerapan Algoritma FP-Growth untuk Strategi Penjualan Toko,” vol. 9, no. June, pp. 444–451, 2025.

K. Metode and A. Dan, “Komparasi metode apriori dan fp-growth untuk meningkatkan pola penjualan,” vol. 10, no. 1, pp. 1–9, 2025.

D. Pratama, K. Kaslani, and E. Tohidi, “Market Basket Analysis Pada Data Penjualan Umkm Menggunakan Algoritma Fp-Growth,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 4, pp. 8197–8206, 2024, doi: 10.36040/jati.v8i4.10939.

F. Z. Ghassani, Asep Jamaludin, and Agung Susilo Yuda Irawan, “Market Basket Analysis Using the Fp-Growth Algorithm To Determine Cross-Selling,” J. Inform. Polinema, vol. 7, no. 4, pp. 49–54, 2022, doi: 10.33795/jip.v7i4.508.

D. Cahyanti and I. Permana, “COMPARISON OF BOOK SHOPPING PATTERNS BEFORE AND DURING THE COVID-19 PANDEMIC USING THE FP-GROWTH ALGORITHM AT ZANAFA BOOKSTORES PERBANDINGAN POLA BELANJA BUKU SEBELUM DAN MASA PANDEMI COVID-19 MENGGUNAKAN ALGORITMA FP-GROWTH PADA TOKO BUKU ZANAFA Abstrak,” J. Tek. Inform., vol. 3, no. 2, pp. 381–386, 2022, [Online]. Available: https://doi.org/10.20884/1.jutif.2022.3.2.211

P. T. Raka and A. J. I. Sentosa, “PENENTUAN POLA PEMBELIAN CELANA ANAK MENGGUNAKAN ALGORITMA FP-GROWTH UNTUK STRATEGI PENJUALAN PADA DETERMINATION OF PURCHASING PATTERNS FOR CHILDREN ’ S PANTS USING THE FP-GROWTH ALGORITHM FOR SALES STRATEGY AT PT . RAKA AJI SENTOSA,” vol. 3, no. June, pp. 1817–1825, 2024.

Yoga Religia and A. Amali, “Perbandingan Optimasi Feature Selection pada Naïve Bayes untuk Klasifikasi Kepuasan Airline Passenger,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 3, pp. 527–533, 2021, doi: 10.29207/resti.v5i3.3086.

Downloads

Published

2025-09-15

How to Cite

Alisa Putri Amanda Nasution, Auralia Izmi, Aprillya Zahra Iswandy Lubis, Haya Atiqah Tampubolon, & Victor Asido Elyakim P. (2025). Analysis of Airline Passenger Satisfaction Using the Rough Set Method. JOMLAI: Journal of Machine Learning and Artificial Intelligence, 4(3), 157–160. https://doi.org/10.55123/jomlai.v4i3.5946