Analysis of Family Economic Factors on Students' Learning Interest Using the C4.5 Algorithm

Authors

  • Dian Rahayu STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Solikhun Solikhun STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Rizky Kairunnisa Sormin STIKOM Tunas Bangsa, Pematangsiantar, Indonesia

DOI:

https://doi.org/10.55123/jomlai.v2i2.3195

Keywords:

Algorithm C4.5, Classification, Student, Economic Factors, Interest to learn

Abstract

This study aims to analyze the influence of family economic factors on the learning interest of students at SMA Negeri 2 Pematangsiantar using the C4.5 algorithm. The C4.5 method is employed to identify the relationship between family economic variables and students' learning interest. The research is conducted at SMA Negeri 2 Pematangsiantar, involving students as the main respondents. Data is collected through a questionnaire covering family economic variables and the level of students' learning interest. Data analysis using the C4.5 algorithm assists in identifying family economic factors that significantly affect students' learning interest. The study's results are expected to provide a deeper understanding of the impact of family economic factors on student learning motivation in the high school environment. This research contributes to the education literature and offers insights for educators, parents, and education stakeholders to enhance support for students with diverse family economic backgrounds. The implications of these findings can aid in designing more inclusive education policies and supporting academic growth for high school students.

References

A. Syafii, B. Bahar, S. Shobicah, and A. Muharam, ‘Pengukuran Indeks Mutu Pendidikan Berbasis Standar Nasional’, Jurnal Multidisiplin Indonesia, vol. 2, no. 7, pp. 1697–1701, 2023, doi: 10.58344/jmi.v2i7.332.

R. Darmansyah and K. A. Us, ‘Faktor Faktor yang Mempengaruhi Manajemen Pendidikan Islam: Sistem Pendidikan, Pengelolaan Pendidikan, Tenaga Pendidikan’, Jurnal Ilmu Manajemen Terapan, vol. 3, no. 4, pp. 354–364, 2022, doi: 10.31933/jimt.v3i4.

J. Zega and S. Zebua, ‘Analisis Faktor-Faktor Yang Mempengaruhi Kesulitan Belajar Siswa Dalam Pembelajaran IPS Terpadu Kelas VIII SMP Negeri 2 Tuhemberua Tahun Pelajaran 2022/2023’, Jurnal Pendidikan dan Konseling, vol. 5, no. 4, pp. 664–674, 2023, doi: 10.31004/jpdk.v5i4.17974.

M. M.Nur, ‘Evaluasi Motivasi Belajar Siswa Kelas XI IPA dalam Pembelajaran Biologi di MAN 1 Halmahera Tengah’, JIPDAS : Jurnal Ilmiah Pendidikan Dasar, vol. 2, no. 1, pp. 22–32, 2023.

C. E. Kaborang, J. N. Kallau, and U. Geradus, ‘Pengaruh Kondisi Ekonomi Orang Tua Dan Peran Teman Sebaya Terhadap Minat Belajar Siswa Kelas XI IPS SMA Negeri 3 Kupang’, Jurnal Edukasi Sumba (JES), vol. 6, no. 1, pp. 36–43, 2022, doi: 10.53395/jes.v6i1.429.

N. Arminarahmah, A. D. GS, G. W. Bhawika, M. P. Dewi, and A. Wanto, ‘Mapping the Spread of Covid-19 in Asia Using Data Mining X-Means Algorithms’, IOP Conference Series: Materials Science and Engineering, vol. 1071, no. 1, p. 012018, 2021, doi: 10.1088/1757-899x/1071/1/012018.

T. H. Sinaga, A. Wanto, I. Gunawan, S. Sumarno, and Z. M. Nasution, ‘Implementation of Data Mining Using C4.5 Algorithm on Customer Satisfaction in Tirta Lihou PDAM’, Journal of Computer Networks, Architecture, and High-Performance Computing, vol. 3, no. 1, pp. 9–20, 2021, doi: 10.47709/cnahpc.v3i1.923.

A. Pradipta, D. Hartama, A. Wanto, S. Saifullah, and J. Jalaluddin, ‘The Application of Data Mining in Determining Timely Graduation Using the C45 Algorithm’, IJISTECH (International Journal of Information System & Technology), vol. 3, no. 1, pp. 31–36, 2019, doi: 10.30645/ijistech.v3i1.30.

N. A. Febriyati, A. D. Gs, and A. Wanto, ‘GRDP Growth Rate Clustering in Surabaya City uses the K- Means Algorithm’, International Journal of Information System & Technology, vol. 3, no. 2, pp. 276–283, 2020, doi: 10.30645/ijistech.v3i2.60.

I. Parlina et al., ‘Naive Bayes Algorithm Analysis to Determine the Percentage Level of visitors the Most Dominant Zoo Visit by Age Category’, in Journal of Physics: Conference Series, Aug. 2019, p. 012031. doi: 10.1088/1742-6596/1255/1/012031.

S. R. Ningsih, R. Wulansari, D. Hartama, A. P. Windarto, and A. Wanto, ‘Analysis of PROMETHEE II Method on Selection of Lecturer Community Service Grant Proposals’, in Journal of Physics: Conference Series, Aug. 2019, p. 012004. doi: 10.1088/1742-6596/1255/1/012004.

P. Alkhairi, L. P. Purba, A. Eryzha, A. P. Windarto, and A. Wanto, ‘The Analysis of the ELECTREE II Algorithm in Determining the Doubts of the Community Doing Business Online’, in Journal of Physics: Conference Series, Institute of Physics Publishing, Sep. 2019, p. 012010. doi: 10.1088/1742-6596/1255/1/012010.

R. Watrianthos, W. A. Ritonga, A. Rengganis, A. Wanto, and M. Isa Indrawan, ‘Implementation of PROMETHEE-GAIA Method for Lecturer Performance Evaluation’, Journal of Physics: Conference Series, vol. 1933, no. 1, p. 012067, 2021, doi: 10.1088/1742-6596/1933/1/012067.

S. Sundari, A. Wanto, Saifullah, and I. Gunawan, ‘Sistem Pendukung Keputusan Dengan Menggunakan Metode Electre Dalam Merekomendasikan Dosen Berprestasi Bidang Ilmu Komputer (Study Kasus di AMIK & STIKOM Tunas Bangsa)’, in Seminar Nasional Multi Disiplin Ilmu, 2017, pp. 1–6. doi: 10.17605/OSF.IO/4TWG6.

M. Widyasuti, A. Wanto, D. Hartama, and E. Purwanto, ‘Rekomendasi Penjualan Aksesoris Handphone Menggunakan Metode Analitycal Hierarchy Process (AHP)’, Konferensi Nasional Teknologi Informasi dan Komputer (KOMIK), vol. I, no. 1, pp. 27–32, 2017.

K. Fatmawati et al., ‘Analysis of Promothee II Method in the Selection of the Best Formula for Infants Under Three Years’, Journal of Physics: Conference Series, vol. 1255, no. 1, p. 012009, Aug. 2019, doi: 10.1088/1742-6596/1255/1/012009.

I. A. R. Simbolon, F. Yatussa’ada, and A. Wanto, ‘Penerapan Algoritma Backpropagation dalam Memprediksi Persentase Penduduk Buta Huruf di Indonesia’, Jurnal Informatika Upgris, vol. 4, no. 2, pp. 163–169, 2018, doi: 10.26877/jiu.v4i2.2423.

W. Saputra, J. T. Hardinata, and A. Wanto, ‘Resilient method in determining the best architectural model for predicting open unemployment in Indonesia’, IOP Conference Series: Materials Science and Engineering, vol. 725, no. 1, p. 012115, Jan. 2020, doi: 10.1088/1757-899X/725/1/012115.

E. Hartato, D. Sitorus, and A. Wanto, ‘Analisis Jaringan Saraf Tiruan Untuk Prediksi Luas Panen Biofarmaka Di Indonesia’, SemanTIK, vol. 4, no. 1, pp. 49–56, 2018, doi: 10.55679/semantik.v4i1.4201.

B. K. Sihotang and A. Wanto, ‘Analisis Jaringan Syaraf Tiruan Dalam Memprediksi Jumlah Tamu Pada Hotel Non Bintang’, Jurnal Teknologi Informasi Techno, vol. 17, no. 4, pp. 333–346, 2018, doi: 10.33633/tc.v17i4.1762.

I. S. Purba and A. Wanto, ‘Prediksi Jumlah Nilai Impor Sumatera Utara Menurut Negara Asal Menggunakan Algoritma Backpropagation’, Jurnal Teknologi Informasi Techno, vol. 17, no. 3, pp. 302–311, 2018, doi: 10.33633/tc.v17i3.1769.

A. Wanto, S. Defit, and A. P. Windarto, ‘Algoritma Fungsi Perlatihan pada Machine Learning berbasis ANN untuk Peramalan Fenomena Bencana’, RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 2, pp. 254–264, 2021, doi: 10.29207/resti.v5i2.3031.

A. Wanto and J. T. Hardinata, ‘Estimations of Indonesian poor people as poverty reduction efforts facing industrial revolution 4.0’, IOP Conference Series: Materials Science and Engineering, vol. 725, no. 1, p. 012114, Jan. 2020, doi: 10.1088/1757-899X/725/1/012114.

T. Hidayati, D. Wulandari, and W. G. Aedi, ‘Scientia Sacra : Jurnal Sains , Teknologi dan Masyarakat Implementasi Algoritma C4 . 5 Dalam Memprediksi Harga’, Scientia Sacra: Jurnal Sains, Teknologi dan Masyarakat, vol. 3, no. 4, pp. 1–7, 2023.

A. Erna, M. S. Natsir, A. K. Jailani, Y. R. Wicaksono, and P. N. Yusuf, ‘Strategi Analisis Faktor-faktor Penurunan Prestasi Belajar Matematika dengan Pendekatan Data Mining’, Jurnal Studi Inovasi, vol. 2, no. 4, pp. 17–23, 2022, doi: 10.52000/jsi.v2i4.122.

B. A. Wijaya, V. Kumar, B. F. Jhon Wau, J. P. Tanjung, and N. P. Dharshinni, ‘Application of Data Mining using Naive Bayes for Student Success Rates in Learning’, Jurnal Media Informatika Budidarma, vol. 6, no. 4, pp. 1980–1987, 2022, doi: 10.30865/mib.v6i4.4639.

M. Bisi and S. Sumaryoto, ‘Pengaruh Kemampuan Ekonomi Orang Tua dan Minat Belajar terhadap Prestasi Belajar IPS pada Siswa SMP Negeri di Kabupaten Tangerang’, Herodotus: Jurnal Pendidikan IPS, vol. 6, no. 1, pp. 94–102, 2023, doi: 10.30998/herodotus.v6i1.12626.

Downloads

Published

2023-06-30

How to Cite

Rahayu, D., Solikhun, S., & Sormin, R. K. (2023). Analysis of Family Economic Factors on Students’ Learning Interest Using the C4.5 Algorithm. JOMLAI: Journal of Machine Learning and Artificial Intelligence, 2(2), 161–170. https://doi.org/10.55123/jomlai.v2i2.3195

Issue

Section

Articles