Overview of Infant Nutrition Status Classification with Rough Set Method

Authors

  • Jessica Evonella Napitupulu STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Dimas Trianda STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Refly Natalius Nababan STIKOM Tunas Bangsa, Pematangsiantar, Indonesia

DOI:

https://doi.org/10.55123/jomlai.v2i3.2893

Keywords:

Overview, Classification, Status, Baby Nutrition, Rough Set

Abstract

Infant growth and development is an important issue that can be known through nutritional status assessment. A measure of the fulfillment of nutrition in children that can be predicted based on their weight. In assessing the nutritional status of infants, there are concerns in the community about nutritional problems that are good to know, many babies are malnourished and also want to know which children whose nutrition is really ideal]. Rough Set Algorithm can be used as a mathematical tool to overcome uncertainty and imprecise information. This study aims to classify the percentage of nutritional status of infants, using Microsoft Excel and Rosetta version 2.0.0.0 for research and data analysis. The research produced 20 rules in the form of rule patterns as a reference for classifying the nutritional status of infants as poor, less, normal and more. Based on the rules generated, it is concluded that the most influential condition attributes in classifying the nutritional status of infants are gender, age, weight, height and gender, weight, height.

References

D. F. Uramako, ‘Faktor Determinan yang Berpengaruh Terhadap Status Gizi Remaja’, Jurnal Ilmiah Kesehatan Sandi Husada, vol. 10, no. 2, pp. 560–567, 2021, doi: 10.35816/jiskh.v10i2.651.

Ufiyah Ramlah, ‘Gangguan Kesehatan Pada Anak Usia Dini Akibat Kekurangan Gizi Dan Upaya Pencegahannya’, Ana’ Bulava: Jurnal Pendidikan Anak, vol. 2, no. 2, pp. 12–25, 2021, doi: 10.24239/abulava.vol2.iss2.40.

Nuraeni, Haniarti, and Fitriani Umar, ‘Pengaruh Status Sosial Ekonomi Dan Pola Makan Terhadap Status Gizi Ibu Hamil Di Wilayah Kerja Puskesmas Mattombong Kecamatan Mattiro Sompe Kabupaten Pinrang’, Jurnal Ilmiah Manusia Dan Kesehatan, vol. 4, no. 2, pp. 201–217, 2021, doi: 10.31850/makes.v4i2.558.

Q. N. Sahroji, R. Hidayat, and R. Nababan, ‘Implementasi Kebijakan Dinas Kesehatan Dalam Penanganan Stunting Di Kabupaten Karawang’, Jurnal Pemerintahan dan Politik, vol. 7, no. 1, pp. 34–39, 2022, doi: 10.36982/jpg.v7i1.1983.

L. Mulyana and E. Farida, ‘Pola Pemberian Makan yang Tepat dalam Mengurangi Resiko Obesitas pada Balita’, Indonesian Journal of Public Health and Nutrition, vol. 2, no. 1, pp. 36–42, 2022, doi: 10.15294/ijphn.v2i1.51661.

P. Y. Pane, A. Anaria, and A. S. Eveline, ‘Perbedaan Status Gizi pada Balita Sebelum dan Sesudah Pandemi Covid-19’, Jurnal Penelitian Perawat Profesional, vol. 4, no. 1, pp. 7–16, 2022, doi: 10.37287/jppp.v4i1.699.

N. Nurwahyuni, A. Nurlinda, A. Asrina, and Y. Yusriani, ‘Tingkat Sosial Ekonomi Ibu Baduta Stunting’, Jurnal Ilmiah Kesehatan Sandi Husada, vol. 12, no. 2, pp. 331–338, 2023, doi: 10.35816/jiskh.v12i2.1080.

R. Z. A. Aziz, ‘Implementasi Algoritma Rough Set Dan Naive Bayes Untuk Mendapatkan Rule Dalam Menyeleksi Pemohon Bantuan Fasilitas Rumah Ibadah ( Studi Kasus : Pemerintah Kabupaten Pringsewu )’, vol. 03, no. 02, 2020.

S. R. Ningsih, R. Wulansari, D. Hartama, A. P. Windarto, and A. Wanto, ‘Analysis of PROMETHEE II Method on Selection of Lecturer Community Service Grant Proposals’, in Journal of Physics: Conference Series, Aug. 2019, p. 012004. doi: 10.1088/1742-6596/1255/1/012004.

P. Alkhairi, L. P. Purba, A. Eryzha, A. P. Windarto, and A. Wanto, ‘The Analysis of the ELECTREE II Algorithm in Determining the Doubts of the Community Doing Business Online’, in Journal of Physics: Conference Series, Institute of Physics Publishing, Sep. 2019, p. 012010. doi: 10.1088/1742-6596/1255/1/012010.

R. Watrianthos, W. A. Ritonga, A. Rengganis, A. Wanto, and M. Isa Indrawan, ‘Implementation of PROMETHEE-GAIA Method for Lecturer Performance Evaluation’, Journal of Physics: Conference Series, vol. 1933, no. 1, p. 012067, 2021, doi: 10.1088/1742-6596/1933/1/012067.

S. Sundari, A. Wanto, Saifullah, and I. Gunawan, ‘Sistem Pendukung Keputusan Dengan Menggunakan Metode Electre Dalam Merekomendasikan Dosen Berprestasi Bidang Ilmu Komputer (Study Kasus di AMIK & STIKOM Tunas Bangsa)’, in Seminar Nasional Multi Disiplin Ilmu, 2017, pp. 1–6. doi: 10.17605/OSF.IO/4TWG6.

M. Widyasuti, A. Wanto, D. Hartama, and E. Purwanto, ‘Rekomendasi Penjualan Aksesoris Handphone Menggunakan Metode Analitycal Hierarchy Process (AHP)’, Konferensi Nasional Teknologi Informasi dan Komputer (KOMIK), vol. I, no. 1, pp. 27–32, 2017.

K. Fatmawati et al., ‘Analysis of Promothee II Method in the Selection of the Best Formula for Infants Under Three Years’, Journal of Physics: Conference Series, vol. 1255, no. 1, p. 012009, Aug. 2019, doi: 10.1088/1742-6596/1255/1/012009.

N. Rofiqo, A. P. Windarto, and A. Wanto, ‘Penerapan Metode VIKOR Pada Faktor Penyebab Rendahnya Minat Mahasiswa Dalam Menulis Artikel Ilmiah’, Seminar Nasional Sains & Teknologi Informasi (SENSASI), vol. 1, no. 1, pp. 228–237, 2018.

S. R. Ningsih, D. Hartama, A. Wanto, I. Parlina, and Solikhun, ‘Penerapan Sistem Pendukung Keputusan Pada Pemilihan Objek Wisata di Simalungun’, in Seminar Nasional Teknologi Komputer & Sains (SAINTEKS), 2019, pp. 731–735.

I. A. R. Simbolon, F. Yatussa’ada, and A. Wanto, ‘Penerapan Algoritma Backpropagation dalam Memprediksi Persentase Penduduk Buta Huruf di Indonesia’, Jurnal Informatika Upgris, vol. 4, no. 2, pp. 163–169, 2018, doi: 10.26877/jiu.v4i2.2423.

W. Saputra, J. T. Hardinata, and A. Wanto, ‘Resilient method in determining the best architectural model for predicting open unemployment in Indonesia’, IOP Conference Series: Materials Science and Engineering, vol. 725, no. 1, p. 012115, Jan. 2020, doi: 10.1088/1757-899X/725/1/012115.

E. Hartato, D. Sitorus, and A. Wanto, ‘Analisis Jaringan Saraf Tiruan Untuk Prediksi Luas Panen Biofarmaka Di Indonesia’, SemanTIK, vol. 4, no. 1, pp. 49–56, 2018, doi: 10.55679/semantik.v4i1.4201.

B. K. Sihotang and A. Wanto, ‘Analisis Jaringan Syaraf Tiruan Dalam Memprediksi Jumlah Tamu Pada Hotel Non Bintang’, Jurnal Teknologi Informasi Techno, vol. 17, no. 4, pp. 333–346, 2018, doi: 10.33633/tc.v17i4.1762.

I. S. Purba and A. Wanto, ‘Prediksi Jumlah Nilai Impor Sumatera Utara Menurut Negara Asal Menggunakan Algoritma Backpropagation’, Jurnal Teknologi Informasi Techno, vol. 17, no. 3, pp. 302–311, 2018, doi: 10.33633/tc.v17i3.1769.

A. Wanto, S. Defit, and A. P. Windarto, ‘Algoritma Fungsi Perlatihan pada Machine Learning berbasis ANN untuk Peramalan Fenomena Bencana’, RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 2, pp. 254–264, 2021, doi: 10.29207/resti.v5i2.3031.

A. Wanto and J. T. Hardinata, ‘Estimations of Indonesian poor people as poverty reduction efforts facing industrial revolution 4.0’, IOP Conference Series: Materials Science and Engineering, vol. 725, no. 1, p. 012114, Jan. 2020, doi: 10.1088/1757-899X/725/1/012114.

N. Arminarahmah, A. D. GS, G. W. Bhawika, M. P. Dewi, and A. Wanto, ‘Mapping the Spread of Covid-19 in Asia Using Data Mining X-Means Algorithms’, IOP Conference Series: Materials Science and Engineering, vol. 1071, no. 1, p. 012018, 2021, doi: 10.1088/1757-899x/1071/1/012018.

T. H. Sinaga, A. Wanto, I. Gunawan, S. Sumarno, and Z. M. Nasution, ‘Implementation of Data Mining Using C4.5 Algorithm on Customer Satisfaction in Tirta Lihou PDAM’, Journal of Computer Networks, Architecture, and High-Performance Computing, vol. 3, no. 1, pp. 9–20, 2021, doi: 10.47709/cnahpc.v3i1.923.

A. Pradipta, D. Hartama, A. Wanto, S. Saifullah, and J. Jalaluddin, ‘The Application of Data Mining in Determining Timely Graduation Using the C45 Algorithm’, IJISTECH (International Journal of Information System & Technology), vol. 3, no. 1, pp. 31–36, 2019, doi: 10.30645/ijistech.v3i1.30.

N. A. Febriyati, A. D. Gs, and A. Wanto, ‘GRDP Growth Rate Clustering in Surabaya City uses the K- Means Algorithm’, International Journal of Information System & Technology, vol. 3, no. 2, pp. 276–283, 2020, doi: 10.30645/ijistech.v3i2.60.

I. Parlina et al., ‘Naive Bayes Algorithm Analysis to Determine the Percentage Level of visitors the Most Dominant Zoo Visit by Age Category’, in Journal of Physics: Conference Series, Aug. 2019, p. 012031. doi: 10.1088/1742-6596/1255/1/012031.

E. Mardiani et al., ‘Membandingkan Algoritma Data Mining Dengan Tools Orange untuk Social Economy’, Digital Transformation Technology, vol. 3, no. 2, pp. 686–693, 2023, doi: 10.47709/digitech.v3i2.3256.

E. Astuti, N. E. Saragih, and P. Yunita, ‘Analisis Tingkat Kepuasan Pelanggan Terhadap Penjualan Air Minum Kangen Water Dengan Metode Rough Set’, Bulletin of Information Technology (BIT), vol. 3, no. 3, pp. 179–188, 2022, doi: 10.47065/bit.v3i3.318.

Z. A. Gultom, K. Erwansyah, and A. Calam, ‘Implementasi Data Mining untuk Memprediksi Penghasilan Penjualan Handphone di Toko Ponsel Takasimura dengan Metode Rough Set’, Jurnal Cyber Tech, vol. 2, no. 1, pp. 1–14, 2021.

Downloads

Published

2023-09-30

How to Cite

Napitupulu, J. E., Trianda, D., & Nababan , R. N. . (2023). Overview of Infant Nutrition Status Classification with Rough Set Method . JOMLAI: Journal of Machine Learning and Artificial Intelligence, 2(3), 171–178. https://doi.org/10.55123/jomlai.v2i3.2893

Issue

Section

Articles