The Best Village Selection Decision Support System in Simalungun Regency Using the SAW Method
DOI:
https://doi.org/10.55123/jomlai.v2i1.1933Keywords:
Decision Support, Best Village, Simalungun District, SAW methodAbstract
This study aims to develop a decision support system to select the best village in Simalungun District. The SAW (Simple Additive Weighting) method is used for decision-making. This system is designed to assist local governments and related stakeholders in selecting the best villages based on relevant criteria. The criteria covered aspects such as community education, public health, community economy, security and order, community participation, governance, social institutions, and family empowerment and welfare. Consideration of each criterion's weight or level of importance is carried out by involving experts and relevant stakeholders. The SAW method calculates the performance scores of existing villages based on predetermined criteria. The score is then used in the ranking process to determine the best village. Based on the research results, alternative villages that deserve the title of the best village are Marubun Bayu village as rank 1, Dolok Maraja as rank 2 and Naga Jaya II as rank 3. This research is expected to provide significant benefits for decision-makers in selecting the best village in Simalungun Regency to increase efficiency and objectivity in the decision-making process, as well as encourage more sustainable and equitable development in all the villages of Simalungun Regency.
References
F. R. A. Bukit, M. Safril, and Z. P. Nasution, “Making Bah Biak Waterfall Tourism Promotion Video in Desa Bah Biak Kecamatan Sidamanik Kabupaten Simalungun,” ABDIMAS TALENTA: Jurnal …, vol. 7, no. 2, pp. 639–651, 2022.
I. S. Purba et al., “Accuracy Level of Backpropagation Algorithm to Predict Livestock Population of Simalungun Regency in Indonesia,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.
W. Saputra, J. T. Hardinata, and A. Wanto, “Resilient method in determining the best architectural model for predicting open unemployment in Indonesia,” IOP Conference Series: Materials Science and Engineering, vol. 725, no. 1, pp. 1–7, 2020.
I. A. R. Simbolon, F. Yatussa’ada, and A. Wanto, “Penerapan Algoritma Backpropagation dalam Memprediksi Persentase Penduduk Buta Huruf di Indonesia,” Jurnal Informatika Upgris, vol. 4, no. 2, pp. 163–169, 2018.
A. Wanto and J. T. Hardinata, “Estimations of Indonesian poor people as poverty reduction efforts facing industrial revolution 4.0,” IOP Conference Series: Materials Science and Engineering, vol. 725, no. 1, pp. 1–8, 2020.
R. E. Pranata, S. P. Sinaga, and A. Wanto, “Estimasi Wisatawan Mancanegara Yang Datang ke Sumatera Utara Menggunakan Jaringan Saraf,” Jurnal semanTIK, vol. 4, no. 1, pp. 97–102, 2018.
W. Saputra, J. T. Hardinata, and A. Wanto, “Implementation of Resilient Methods to Predict Open Unemployment in Indonesia According to Higher Education Completed,” JITE (Journal of Informatics and Telecommunication Engineering), vol. 3, no. 1, pp. 163–174, Jul. 2019.
A. Wanto et al., “Levenberg-Marquardt Algorithm Combined with Bipolar Sigmoid Function to Measure Open Unemployment Rate in Indonesia,” in The 3rd International Conference ofComputer, Environment, Agriculture, Social Science, Health Science, Engineering andTechnology (ICEST), 2021, no. 1, pp. 22–28.
M. A. Hanafiah and A. Wanto, “Implementation of Data Mining Algorithms for Grouping Poverty Lines by District/City in North Sumatra,” International Journal of Information System & Technology, vol. 3, no. 2, pp. 315–322, 2020.
A. Pradipta, D. Hartama, A. Wanto, S. Saifullah, and J. Jalaluddin, “The Application of Data Mining in Determining Timely Graduation Using the C45 Algorithm,” IJISTECH (International Journal of Information System & Technology), vol. 3, no. 1, pp. 31–36, 2019.
I. Parlina et al., “Naive Bayes Algorithm Analysis to Determine the Percentage Level of visitors the Most Dominant Zoo Visit by Age Category,” Journal of Physics: Conference Series, vol. 1255, no. 1, p. 012031, 2019.
N. Arminarahmah, A. D. GS, G. W. Bhawika, M. P. Dewi, and A. Wanto, “Mapping the Spread of Covid-19 in Asia Using Data Mining X-Means Algorithms,” IOP Conference Series: Materials Science and Engineering, vol. 1071, no. 1, pp. 1–7, 2021.
T. H. Sinaga, A. Wanto, I. Gunawan, S. Sumarno, and Z. M. Nasution, “Implementation of Data Mining Using C4.5 Algorithm on Customer Satisfaction in Tirta Lihou PDAM,” Journal of Computer Networks, Architecture, and High-Performance Computing, vol. 3, no. 1, pp. 9–20, 2021.
T. Imandasari, E. Irawan, A. P. Windarto, and A. Wanto, “Algoritma Naive Bayes Dalam Klasifikasi Lokasi Pembangunan Sumber Air,” in Prosiding Seminar Nasional Riset Information Science (SENARIS), 2019, vol. 1, pp. 750–761.
S. Sundari, Karmila, M. N. Fadli, D. Hartama, A. P. Windarto, and A. Wanto, “Decision Support System on Selection of Lecturer Research Grant Proposals using Preferences Selection Index,” Journal of Physics: Conference Series, vol. 1255, no. 1, p. 012006, Aug. 2019.
P. Alkhairi, L. P. Purba, A. Eryzha, A. P. Windarto, and A. Wanto, “The Analysis of the ELECTREE II Algorithm in Determining the Doubts of the Community Doing Business Online,” Journal of Physics: Conference Series, vol. 1255, no. 1, p. 012010, 2019.
R. Watrianthos, W. A. Ritonga, A. Rengganis, A. Wanto, and M. Isa Indrawan, “Implementation of PROMETHEE-GAIA Method for Lecturer Performance Evaluation,” Journal of Physics: Conference Series, vol. 1933, no. 1, p. 012067, 2021.
K. Fatmawati et al., “Analysis of Promothee II Method in the Selection of the Best Formula for Infants under Three Years,” in Journal of Physics: Conference Series, 2019, vol. 1255, no. 1, pp. 1–6.
S. R. Ningsih, R. Wulansari, D. Hartama, A. P. Windarto, and A. Wanto, “Analysis of PROMETHEE II Method on Selection of Lecturer Community Service Grant Proposals,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, Aug. 2019.
N. Rofiqo, A. P. Windarto, and A. Wanto, “Penerapan Metode VIKOR Pada Faktor Penyebab Rendahnya Minat Mahasiswa Dalam Menulis Artikel Ilmiah,” Seminar Nasional Sains & Teknologi Informasi (SENSASI), vol. 1, no. 1, pp. 228–237, 2018.
L. A. Sulasmini and I. K. J. Arta, “Sistem Pendukung Keputusan Seleksi Penerima Bantuan Pangan Non Tunai Untuk Keluarga Kurang Mampu Di Desa Sepang Dengan Metode Simple Additive Weigthing,” Jurnal Manajemen dan Teknologi Informasi, vol. 12, no. 2, pp. 65–75, 2022.
A. Wanto and H. Damanik, “Analisis Penerapan Sistem Pendukung Keputusan Terhadap Seleksi Penerima Beasiswa BBM (Bantuan Belajar Mahasiswa) Pada Perguruan Tinggi Menggunakan Metode Simple Additive Weighting (SAW) (Studi Kasus : AMIK Tunas Bangsa Pematangsiantar),” in Prosiding Seminar Nasional Rekayasa (SNTR) II, 2015, no. 2, pp. 323–333.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Ina Kusanti Purba, Rahmat Widia Sembiring, Saifullah Saifullah

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2022 The authors. Published by Yayasan Literasi Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
The author(s) whose article is published in the JOMLAI journal attain the copyright for their article and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. By submitting the manuscript to JOMLAI, the author(s) agree with this policy. No special document approval is required.
The author(s) guarantee that:their article is original, written by the mentioned author(s),
- has never been published before,
- does not contain statements that violate the law, and
- does not violate the rights of others, is subject to copyright held exclusively by the author(s), and is free from the rights of third parties, and that the necessary written permission to quote from other sources has been obtained by the author(s).
The author(s) retain all rights to the published work, such as (but not limited to) the following rights:
- Copyright and other proprietary rights related to the article, such as patents,
- The right to use the substance of the article in its own future works, including lectures and books,
- The right to reproduce the article for its own purposes,
- The right to archive all versions of the article in any repository, and
- The right to enter into separate additional contractual arrangements for the non-exclusive distribution of published versions of the article (for example, posting them to institutional repositories or publishing them in a book), acknowledging its initial publication in this journal (JOMLAI: Journal of Machine Learning and Artificial Intelligence).
Suppose the article was prepared jointly by more than one author. Each author submitting the manuscript warrants that all co-authors have given their permission to agree to copyright and license notices (agreements) on their behalf and notify co-authors of the terms of this policy. JOMLAI will not be held responsible for anything that may arise because of the writer's internal dispute. JOMLAI will only communicate with correspondence authors.
Authors should also understand that their articles (and any additional files, including data sets, and analysis/computation data) will become publicly available once published. The license of published articles (and additional data) will be governed by a Creative Commons Attribution-ShareAlike 4.0 International License. JOMLAI allows users to copy, distribute, display and perform work under license. Users need to attribute the author(s) and JOMLAI to distribute works in journals and other publication media. Unless otherwise stated, the author(s) is a public entity as soon as the article is published



















