Data Classification of Marriage Readiness in Young Adults Using the Naïve Bayes Algorithm

Authors

  • Rahmi Fauziah STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Heru Satria Tambunan STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Susiani Susiani STIKOM Tunas Bangsa, Pematangsiantar, Indonesia

DOI:

https://doi.org/10.55123/jomlai.v1i4.1665

Keywords:

Data Mining, Young Adults, Classification, Readiness for Marriage, Naive Bayes

Abstract

Readiness to get married usually must be owned by every individual who wants to run a married life in order to become a harmonious family. However, not all young adults prepare for marriage such as financially, emotionally, roles and others. So the classification is carried out to determine the readiness for marriage with ready and not ready classes. Classification is part of data mining that performs the process of building a model based on existing training data, then using the model for classification on new data. The research data used were taken from 103 young adult, male and female. The algorithm used is Naïve Bayes. The conclusion of this research is testing as much as 5 testing data that is processed in RapidMiner 5.3. get test results with an accuracy of 74,33%, namely 3 data that are not ready and 2 data that are ready. So that the research process can be done quickly and efficiently.

References

F. Abdurrahman, M. Mudjiran, and Z. Ardi, “Hubungan Persepsi Mahasiswa Tentangkeluarga Harmonis Dengan Kesiapan Menikah,” Jurnal Neo Konseling, vol. 2, no. 3, pp. 1–7, 2020.

L. P. Rais, T. H. Dahlan, and M. Bahaqi, “Interkorelasi Antara Stres Pengasuhan, Kepuasan Pernikahan, dan Kesejahteraan Pada Orang Tua dengan Anak Autism Spectrum Disorder di Kota Palembang,” Jurnal Psikologi Insight, vol. 6, no. 1, pp. 20–32, 2022.

S. Mawaddah, L. Safrina, M. Mawarpuri, and S. Faradina, “Perbedaan Kesiapan Menikah Pada Dewasa Awal Ditinjau Dari Jenis Kelamin Di Banda Aceh,” Jurnal EMPATI, vol. 8, no. 1, pp. 320–328, 2019.

M. R. Hamdi and S. Syahniar, “Kesiapan menikah mahasiswa ditinjau dari jenis kelamin, latar belakang budaya dan sosial ekonomi,” JPGI (Jurnal Penelitian Guru Indonesia), vol. 4, no. 2, p. 76, 2019.

S. Sintia et al., “Prosiding Seminar Nasional Riset Information Science (SENARIS) Penerapan Algoritma Apriori Dalam Memprediksi Hasil Penjualan Sparepart PC (Studi Kasus : Toko Sentra Computer),” no. September, pp. 910–917, 2019.

I. Parlina, A. P. Windarto, A. Wanto, and M. R. Lubis, “Memanfaatkan Algoritma K-Means dalam Menentukan Pegawai yang Layak Mengikuti Asessment Center untuk Clustering Program SDP,” CESS (Journal of Computer Engineering System and Science), vol. 3, no. 1, pp. 87–93, 2018.

N. L. W. S. R. Ginantra et al., “Performance One-step secant Training Method for Forecasting Cases,” Journal of Physics: Conference Series, vol. 1933, no. 1, pp. 1–8, 2021.

B. K. Sihotang and A. Wanto, “Analisis Jaringan Syaraf Tiruan Dalam Memprediksi Jumlah Tamu Pada Hotel Non Bintang,” Jurnal Teknologi Informasi Techno, vol. 17, no. 4, pp. 333–346, 2018.

I. S. Purba and A. Wanto, “Prediksi Jumlah Nilai Impor Sumatera Utara Menurut Negara Asal Menggunakan Algoritma Backpropagation,” Jurnal Teknologi Informasi Techno, vol. 17, no. 3, pp. 302–311, 2018.

T. Afriliansyah et al., “Implementation of Bayesian Regulation Algorithm for Estimation of Production Index Level Micro and Small Industry,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.

A. Wanto et al., “Forecasting the Export and Import Volume of Crude Oil, Oil Products and Gas Using ANN,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.

P. Parulian et al., “Analysis of Sequential Order Incremental Methods in Predicting the Number of Victims Affected by Disasters,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–6, 2019.

A. Wanto et al., “Epoch Analysis and Accuracy 3 ANN Algorithm using Consumer Price Index Data in Indonesia,” in Proceedings of the 3rd International Conference of Computer, Environment, Agriculture, Social Science, Health Science, Engineering and Technology (ICEST), 2021, no. 1, pp. 35–41.

J. Wahyuni, Y. W. Paranthy, and A. Wanto, “Analisis Jaringan Saraf Dalam Estimasi Tingkat Pengangguran Terbuka Penduduk Sumatera Utara,” Jurnal Infomedia, vol. 3, no. 1, pp. 18–24, 2018.

V. V. Sianipar, A. Wanto, and M. Safii, “Decision Support System for Determination of Village Fund Allocation Using AHP Method,” The IJICS (International Journal of Informatics and Computer Science) ISSN, vol. 4, no. 1, pp. 20–28, 2020.

H. Wanto, Anjar. Damanik, “Analisis Penerapan Sistem Pendukung Keputusan Terhadap Seleksi Penerima Beasiswa BBM (Bantuan Belajar Mahasiswa) Pada Perguruan Tinggi Menggunakan Metode Simple Additive Weighting (SAW) (Studi Kasus : AMIK Tunas Bangsa Pematangsiantar),” Prosiding Seminar Nasional Rekayasa (SNTR) II Volume (2) 25 November 2015 ISSN : 2407- 735, vol. 2, no. November, pp. 323–324, 2015.

S. Sundari, A. Wanto, Saifullah, and I. Gunawan, “Sistem Pendukung Keputusan Dengan Menggunakan Metode Electre Dalam Merekomendasikan Dosen Berprestasi Bidang Ilmu Komputer (Study Kasus di AMIK & STIKOM Tunas Bangsa),” in Seminar Nasional Multi Disiplin Ilmu, 2017, pp. 1–6.

T. Imandasari, A. Wanto, and A. P. Windarto, “Analisis Pengambilan Keputusan Dalam Menentukan Mahasiswa PKL Menggunakan Metode PROMETHEE,” Jurnal Riset Komputer (JURIKOM), vol. 5, no. 3, pp. 234–239, 2018.

S. Sundari, S. M. Sinaga, I. S. Damanik, and A. Wanto, “Sistem Pendukung Keputusan Pemilihan Peserta Olimpiade Matematika SMA Swasta Teladan Pematangsiantar Dengan Metode Electre,” in Seminar Nasional Teknologi Komputer & Sains (SAINTEKS), 2019, pp. 793–799.

M. A. Amri, D. Hartama, A. Wanto, Sumarno, and H. S. Tambunan, “Penerapan Metode Fuzzy Mamdani dalam Penentuan Penerima BLT-DD di Mekar Sari Raya,” KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), vol. 4, no. 1, pp. 269–277, 2020.

A. Wulandari, R. P. Saragih, Maslina Manurung, A. Wanto, and rfan S. Damanik, “Sistem Pendukung Keputusan pada Pemilihan Masker Wajah Facial mask Berdasarkan Konsumen dengan Metode Analytical Hierarchy Process,” in Seminar Nasional Ilmu Sosial dan Teknologi (SANISTEK), 2021, pp. 197–201.

F. Fania, M. Azzahra, D. Hartama, A. Wanto, and A. Rahim, “Rekomendasi Pemilihan Calon Peserta MTQ Terbaik Tahun 2019 dengan Teknik Additive Ratio Assessment (ARAS),” in Seminar Nasional Sains dan Teknologi Informasi (SENSASI), 2021, pp. 608–612.

D. N. Batubara, A. Padillah, Chairunnisa, A. Wanto, and Saifullah, “Penerapan Metode VIKOR Untuk Menentukan Susu Lansia Terbaik,” in Seminar Nasional Sains dan Teknologi Informasi (SENSASI), 2021, pp. 586–591.

S. R. Ningsih, D. Hartama, A. Wanto, I. Parlina, and Solikhun, “Penerapan Sistem Pendukung Keputusan Pada Pemilihan Objek Wisata di Simalungun,” in Seminar Nasional Teknologi Komputer & Sains (SAINTEKS), 2019, pp. 731–735.

I. S. Purba and A. Wanto, “Prediksi Jumlah Nilai Impor Sumatera Utara Menurut Negara Asal Menggunakan Algoritma Backpropagation,” Techno.Com, vol. 17, no. 3, 2018.

A. Wanto and A. P. Windarto, “Analisis Prediksi Indeks Harga Konsumen Berdasarkan Kelompok Kesehatan Dengan Menggunakan Metode Backpropagation,” Jurnal & Penelitian Teknik Informatika Sinkron, vol. 2, no. 2, pp. 37–44, 2017.

M. Mahendra, R. C. Telaumbanua, A. Wanto, and A. P. Windarto, “Akurasi Prediksi Ekspor Tanaman Obat , Aromatik dan Rempah-Rempah Menggunakan Machine Learning,” KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 2, no. 6, pp. 207–215, 2022.

A. A. Fardhani, D. Insani, N. Simanjuntak, and A. Wanto, “Prediksi Harga Eceran Beras Di Pasar Tradisional Di 33 Kota Di Indonesia Menggunakan Algoritma Backpropagation,” Jurnal Infomedia, vol. 3, no. 1, pp. 25–30, 2018.

A. Wanto, “Prediksi Produktivitas Jagung Indonesia Tahun 2019-2020 Sebagai Upaya Antisipasi Impor Menggunakan Jaringan Saraf Tiruan Backpropagation,” SINTECH (Science and Information Technology), vol. 1, no. 1, pp. 53–62, 2019.

A. Wanto, “Prediksi Angka Partisipasi Sekolah dengan Fungsi Pelatihan Gradient Descent With Momentum & Adaptive LR,” ALGORITMA : JURNAL ILMU KOMPUTER DAN INFORMATIKA, vol. 3, no. 1, p. 9, Apr. 2019.

A. Wanto and J. T. Hardinata, “Estimasi Penduduk Miskin di Indonesia Sebagai Upaya Pengentasan Kemiskinan dalam Menghadapi Revolusi Industri 4.0,” CESS (Journal of Computer Engineering System and Science), vol. 4, no. 2, pp. 198–207, 2019.

S. P. Sinaga, A. Wanto, and S. Solikhun, “Implementasi Jaringan Syaraf Tiruan Resilient Backpropagation dalam Memprediksi Angka Harapan Hidup Masyarakat Sumatera Utara,” Jurnal Infomedia, vol. 4, no. 2, pp. 81–88, 2019.

V. V. Utari, A. Wanto, I. Gunawan, and Z. M. Nasution, “Prediksi Hasil Produksi Kelapa Sawit PTPN IV Bahjambi Menggunakan Algoritma Backpropagation,” Journal of Computer System and Informatics (JoSYC, vol. 2, no. 3, pp. 271–279, 2021.

A. Wanto, N. L. W. S. R. Ginantra, S. Hendraputra, I. O. Kirana, and A. R. Damanik, “Optimization of Performance Traditional Back-propagation with Cyclical Rule for Forecasting Model,” Matrik: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer, vol. 22, no. 1, pp. 51–82, 2022.

I. I. P. Damanik, S. Solikhun, I. S. Saragih, I. Parlina, D. Suhendro, and A. Wanto, “Algoritma K-Medoids untuk Mengelompokkan Desa yang Memiliki Fasilitas Sekolah di Indonesia,” in Prosiding Seminar Nasional Riset Information Science (SENARIS), 2019, vol. 1, no. September, pp. 520–527.

M. Anjelita, A. P. Windarto, and A. Wanto, “Analisis Metode K-Means pada Kasus Ekspor Barang Perhiasan dan Barang Berharga Berdasarkan Negara Tujuan,” Seminar Nasional Sains & Teknologi Informasi (SENSASI), pp. 476–482, 2019.

D. Wahyuli, H. Handrizal, I. Parlina, A. P. Windarto, D. Suhendro, and A. Wanto, “Mengelompokkan Garis Kemiskinan Menurut Provinsi Menggunakan Algoritma K-Medoids,” Prosiding Seminar Nasional Riset Information Science (SENARIS), vol. 1, p. 452, Jul. 2019.

F. S. Napitupulu, I. S. Damanik, I. S. Saragih, and A. Wanto, “Algoritma K-Means untuk Pengelompokkan Dokumen Akta Kelahiran pada Tiap Kecamatan di Kabupaten Simalungun,” Building of Informatics, Technology and Science (BITS) Volume, vol. 2, no. 1, pp. 55–63, 2020.

H. J. Damanik, E. Irawan, I. S. Damanik, and A. Wanto, “Penerapan Algoritma Naive Bayes untuk Penentuan Resiko Kredit Kepemilikan Kendaraan Bermotor,” Prosiding Seminar Nasional Riset Information Science (SENARIS), vol. 1, 2019.

S. F. Damanik, A. Wanto, and I. Gunawan, “Penerapan Algoritma Decision Tree C4.5 untuk Klasifikasi Tingkat Kesejahteraan Keluarga pada Desa Tiga Dolok,” Jurnal Krisnadana Volume, vol. 1, no. 2, pp. 21–32, 2022.

I. Parlina et al., “Naive Bayes Algorithm Analysis to Determine the Percentage Level of visitors the Most Dominant Zoo Visit by Age Category,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–5, 2019.

N. A. Febriyati, A. D. GS, and A. Wanto, “GRDP Growth Rate Clustering in Surabaya City uses the K- Means Algorithm,” International Journal of Information System & Technology, vol. 3, no. 2, pp. 276–283, 2020.

M. A. Hanafiah and A. Wanto, “Implementation of Data Mining Algorithms for Grouping Poverty Lines by District/City in North Sumatra,” International Journal of Information System & Technology, vol. 3, no. 2, pp. 315–322, 2020.

N. Arminarahmah, A. D. GS, G. W. Bhawika, M. P. Dewi, and A. Wanto, “Mapping the Spread of Covid-19 in Asia Using Data Mining X-Means Algorithms,” IOP Conference Series: Materials Science and Engineering, vol. 1071, no. 1, pp. 1–7, 2021.

C. Fadlan, S. Ningsih, and A. P. Windarto, “Penerapan Metode Naïve Bayes Dalam Klasifikasi Kelayakan Keluarga Penerima Beras Rastra,” Jurnal Teknik Informatika Musirawas (JUTIM), vol. 3, no. 1, p. 1, 2018.

G. Abdurrahman, “Klasifikasi Penyakit Diabetes Melitus Menggunakan Adaboost Classifier,” JUSTINDO (Jurnal Sistem dan Teknologi Informasi Indonesia), vol. 7, no. 1, pp. 59–66, 2022.

D. P. Utomo and M. Mesran, “Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung,” Jurnal Media Informatika Budidarma, vol. 4, no. 2, p. 437, 2020.

Downloads

Published

2022-12-30

How to Cite

Fauziah, R., Tambunan, H. S., & Susiani, S. (2022). Data Classification of Marriage Readiness in Young Adults Using the Naïve Bayes Algorithm. JOMLAI: Journal of Machine Learning and Artificial Intelligence, 1(4), 285–294. https://doi.org/10.55123/jomlai.v1i4.1665

Issue

Section

Articles