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1. INTRODUCTION

The development of forecasting models has evolved from linear regression systems to highly nonlinear neural architectures
capable of modeling temporal dependencies [1]-[3]. However, as data complexity increases toward high-dimensional and non-
stationary structures, traditional statistical models become inadequate [4], [5]. In recent years, the integration of quantum
mechanics and information theory into neural systems has opened new possibilities for representing uncertainty, superposition,
and probabilistic learning in mathematical form. [6]-[8]. These principles allow model parameters to behave as quantum
amplitudes, preserving phase and magnitude information simultaneously. Such representations offer a richer structure for
capturing hidden correlations within complex data streams.

Classical nonlinear autoregressive models, including the widely used NARX architecture, rely on deterministic mappings
between historical observations and exogenous variables [9]. While powerful, these mappings struggle to maintain stability and
generalization when the number of inputs exceeds millions of dimensions. In large-scale applications, overfitting and chaotic
gradient oscillations often emerge due to the absence of probabilistic control mechanisms within the learning space [10].
Moreover, gradient-based optimization under Euclidean geometry cannot accurately describe systems with curvature or
entangled parameter manifolds. These challenges limit the scalability of conventional NARX models in big data environments
where noise, uncertainty, and dynamic interdependencies dominate. Hence, a new mathematical approach is needed that accounts
for both deterministic dynamics and stochastic entropy properties in learning equations.

Quantum information theory provides a mathematical foundation for describing systems governed by uncertainty, entropy,
and information balance [11]-[13]. Its formulation in Hilbert space enables data to be represented as wave functions, where
probability amplitudes evolve under linear and unitary transformations [14]. Unlike classical statistics that rely on real-valued
probability distributions, quantum probability can encode correlations that are both local and global through superposition and
entanglement. When applied to neural forecasting, this structure allows each neuron or state variable to represent not just a single
value but a distribution of potential outcomes with corresponding probabilities. Entropy, in the quantum and information theory,
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measures the uncertainty or information content embedded in a system’s state [15]. Within neural computation, entropy
regularization serves to prevent overconfidence in predictions by penalizing excessively concentrated probability distributions
[16]. By maintaining an appropriate level of entropy during learning, the model avoids degenerate solutions and ensures
smoother convergence toward global minima. The incorporation of entropy within the cost function transforms the optimization
landscape from rigid deterministic descent to an adaptive probabilistic equilibrium [17]. In mathematical terms, entropy acts as
a control parameter that balances prediction accuracy against representational uncertainty.

This paper introduces the Quantum-Entropy NARX (Q-ENARX) model as a purely mathematical framework for dynamic
forecasting, constructed from the convergence of quantum information theory, entropy regularization, and nonlinear
autoregressive principles. The objective is to derive a consistent set of equations governing quantum state transitions, entropy-
regulated loss functions, fractional dynamic operators, and Lyapunov-based stability conditions. The study does not rely on
empirical simulations but instead focuses on the analytical derivation of learning laws, convergence proofs, and information-
theoretic interpretations.

2. RESEARCH METHOD

This study employs a mathematical synthesis of three foundational frameworks nonlinear autoregressive modeling,
entropy-based trust-region optimization, and quantum information theory to construct the proposed Quantum-Entropy NARX
(Q-ENARX) model. The NARX formulation from [18] provides the nonlinear dynamic mapping capable of representing
complex temporal dependencies through recursive autoregressive and exogenous input structures, as well as the generalized
frequency response (GFRF) formulation for higher-order system representation. To ensure numerical stability and regulate
learning in high-dimensional parameter spaces, the entropy-regularized optimization principle from [19] is incorporated,
introducing a trust-region natural-gradient approach that balances exploration and exploitation within the model’s learning
dynamics. Furthermore, the quantum information entropy and statistical dynamics framework from [20] establishes the
foundation for embedding NARX states into a Hilbert space.

2.1 Basic NARX Formulation
The nonlinear autoregressive model with exogenous inputs (NARX) describes dynamic systems as:

Ve =F(Ve1, Ve-2) o Ye—pr Xt Xe—1, "-:xt—q) + & 1)

where y, is the system output, x, the external input, and &, a white-noise residual. For a polynomial approximation of
order n:

F(Xe) = X0y Yoo @i vl + S0 b X0, @)

2.2 Quantum Probability Embedding

To extend this into the quantum probabilistic domain, we embed the NARX state vector x, into a Hilbert space 7

[Ye) = Xicilx), 2l Ci|2 =1 (3)

The system evolution follows a unitary transformation governed by:
[Yev1) = U(O)|e) 4)
where U(0) = e~ (At js the quantum evolution operator parameterized by the system Hamiltonian H (6).

2.3 Entropy Regularization Term

The quantum-entropy constraint is applied to preserve uncertainty balance:

H@e) = —Tr(plogp,) (%)

with the density operator p, = [ )}{¥,].
To prevent over-collapse of probability distributions, the entropy-regularized loss becomes:

L :%Zt(yt_yt)z — AH () (6)

where 4 > 0 controls the trade-off between fitting accuracy and information diversity.

JOMLAL: Journal of Machine Learning and Artificial Intelligence
Vol. 4, No. 4, Desember 2025: 190~196



JOMLAL: Journal of Machine Learning and Artificial Intelligence 192

2.4

2.5

2.6

Quantum Fisher Information and Gradient Update

The model parameters evolve following a quantum-natural gradient derived from the Fisher Information Matrix (FIM):
Fij = RO 0,9e) — Qb | )be] 0,3)) (7)
Parameter updates use the Fisher-preconditioned gradient:

k1 = O —NF 'V L(6)) (©))

Generalized Frequency Response Function (Quantum GFRF)

The quantum generalized frequency response of order m is defined as:
HIY (@1, o 0) = [ = [ hSP (14, o, T "M@ T H 4 OmTm) g, o 9)
where hg") are quantum Volterra kernels encoding the nonlinear and entangled temporal dynamics.

Quantum Regularized Forecasting Equation

Combining all components, the full Q-ENARX evolution is expressed as:

ye = Rl O[] + &,

0 = Zi gi Ai'
L(O) =~ (ye — 9% — A Tr(plogpy),
Oks1 = Ok =N F Vo L(6)

(10)

RESULTS AND DISCUSSION
The proposed Quantum-Entropy NARX (Q-ENARX) model represents a synthesis between nonlinear autoregressive

networks and quantum information theory. Unlike conventional NARX, which operates in a deterministic signal domain, Q-
ENARX generalizes the system’s state into a probabilistic Hilbert space, where each activation corresponds to a quantum
probability amplitude.

3.1

3.2

Quantum State Dynamics and Temporal Encoding

The NARX input-output relation is projected onto a quantum state vector:

[Ye) = Zici Olx), Zila®)]> =1 (11)
The evolution of the hidden dynamics is governed by a unitary operator;

[Yei1) = U@DIYe) = e HEAL ), ) (12)

where H(8,) denotes the Hamiltonian representing nonlinear system energy.

Quantum-Expected Output

The observable output of the model corresponds to the expected value of an operator 0:

Ve = (1/)t|0|¢t) (13)

Substituting (2) into (3) yields the quantum autoregressive recurrence:

Jesr = WelUT (60U (O 1y) (14)

which generalizes the classical nonlinear map to a Hermitian expectation framework.
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3.3 Entropy of Quantum States

System uncertainty is measured by von Neumann entropy:

S(pe) = —Tr(plogp,) (15)

where p, = [ )(¥,| is the state’s density operator. Entropy quantifies the degree of superposition spread, analogous to
stochastic regularization in conventional networks.

3.4 Quantum-Entropy Regularized Loss

The training objective couples mean-squared deviation with entropy control:
1 ~
L(O) = ;Et (e = 9% — AS(pe) (16)

Parameter 4 > 0 adjusts the trade-off between prediction precision and information diversity. Differentiating (6) gives the
quantum-regularized gradient:

2 ~ N
VoL = — EZL’ (Yt = 9)VeI: — AVeS(pr) (17)

3.5 Gradient of the Entropy Term

Using matrix differential calculus, the entropy gradient becomes:

VoS(pe) = —(Vope)(logp, +1) (18)
and the quantum state derivative follows from:

Vopr = (VoD (Wel + (V) (Volihel) (19)
Equations (8)—(9) describe how parameter perturbations modify the informational entropy landscape of the system.

3.6 Quantum Fisher Information and Natural Gradient

The Fisher Information Matrix (FIM) defines the intrinsic curvature of the quantum manifold:

Fij = 4R[0be| 0je) — Qe e )(We| 0;pe)] (20)
Parameter updates follow the quantum-natural gradient:

Ors1 = Ok =N F Vo L(6)) (21)

3.7 Quantum Information Bottleneck

Analogous to the classical Information Bottleneck, Q-ENARX minimizes redundancy via:
Jip =1(X;T) = BI(T; Y) (22)
where I(+;+) denotes quantum mutual information:

1(A;B) = S(A) + S(B) — S(AB) (23)

Minimization of (12) constrains the latent representation T to encode only the most predictive aspects of input X.

3.8 Fractional Quantum Dynamics

To capture long-memory nonlinearities, we incorporate fractional derivatives:

Dfp, = —iH(O)Y,, 0<a<1 (24)

JOMLAL: Journal of Machine Learning and Artificial Intelligence
Vol. 4, No. 4, Desember 2025: 190~196



JOMLAL: Journal of Machine Learning and Artificial Intelligence 194

which in integral form becomes:
e = Yo + 15 [y (¢ =D (IHO P, dr (25)

Fractional order a controls temporal persistence; smaller values produce smoother long-range dependencies.

3.9 Quantum Regularization Energy Functional

The total system energy can be represented as:
1 ~
E®) =51y —91> = 2S(po) (26)

The energy descent law follows:

L = —veLPr <0 27)

3.10 Lyapunov Stability Condition

For stability, a Lyapunov candidate V (e,) = %etTet satisfies:

AV =V(ewy1) —V(e) = etTUf —De, <0 (28)
where J; = df,/ dy; is the Jacobian. Quantum perturbations modify this as:

JiO =Jp + 2 025(p,)/ 9y} (29)
bounded eigenvalues |/1i(/}Q))| <1.
3.11 Entropy-Energy Duality

Thermodynamic equilibrium implies:

5 _1 (30)

0E T
and in learning dynamics:

das 1dE
@ Ta (31)
showing that entropy growth corresponds to energy dissipation through training iterations.

3.12 Quantum Potential Function

Introducing an effective potential:

h2 2
Vo®Wo) = — 50k (32)

the modified forecasting equation reads:

ih T2 = H(0), + Vo(Wo)¥ (33)

which parallels the nonlinear Schrédinger equation used for dynamic prediction with uncertainty coupling.

3.13 Quantum Kullback-Leibler Divergence

Regularization can also be expressed via quantum relative entropy:

D1 (p1llpz) = Tr[p;(logp; — logp,)] (34)
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and incorporated as an alternative penalty term in the loss:

Ly, = Lysg + ADk(pe]lpo) (35)

where p, is a uniform reference density.

3.14 Generalization Bound

Following information-theoretic limits, the expected generalization error satisfies:

MM%J—EMWMJSO( %?)
(36)
showing that higher entropy yields stronger generalization guarantees.
3.15 Quantum Spectral Representation
Temporal dynamics can be analyzed via the quantum spectral transform:
Y(w) = [ ye"tdt 37

and the frequency-domain response:

Yout(w
HQ (a)) = ﬁ((w)) (38)

3.16 Fractional Convergence Rate

The convergence rate under fractional updates satisfies:

r(a) = 1 j-a (39)

r(i+a)
implying sub-linear yet more stable adaptation compared with integer-order descent.

3.17 Quantum Entropy Decay Law

The temporal evolution of entropy follows:

DiS(pe) = —k(S(pe) = S7) (40)

with solution:
S(pe) = 8"+ (So — SEq(—Kt®) (41)

where E, (-) is the Mittag—Leffler function, signifying non-exponential relaxation toward equilibrium.

3.18 Quantum Variance Reduction

Variance of the predicted output decreases exponentially with entropy strength:
Var[y,] « e 45(0) (42)
thus entropy acts as a dynamic variance suppressor improving robustness.

3.19 Unified Quantum Forecasting Operator

Combining all principles yields the compact expression:

Je = R[(We|01Yo)],
da .
O = —iH (B0 Y),
1 ~
L= NZt (e = 9% — AS(pe),
Orr1 =6 —NF VoL
Equation (33) encapsulates the Quantum-Entropy NARX dynamics within a unified variational framework.

(43)
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4. CONCLUSION

The Quantum-Entropy NARX (Q-ENARX) model successfully integrates nonlinear autoregressive dynamics, entropy
regularization, and quantum information theory into a unified predictive framework. By projecting the NARX structure onto a
probabilistic Hilbert space, the model captures both amplitude and phase information of dynamic signals. The incorporation of
von Neumann entropy and Fisher Information ensures stability and generalization through the regulation of uncertainty and
curvature-aware optimization. Moreover, the inclusion of fractional derivatives enhances long-term memory representation,
while entropy-energy duality establishes a thermodynamic interpretation of learning convergence. Theoretical formulations,
from the Lyapunov condition to the quantum Kullback—Leibler divergence, collectively demonstrate that Q-ENARX achieves
robust learning behavior, reduced variance, and improved adaptability to non-stationary environments.
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