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This study addresses the limitations of conventional nonlinear autoregressive models, which 

struggle to maintain stability and generalization in high-dimensional, non-stationary forecasting 

environments. The research aims to develop a mathematical framework that integrates 

deterministic dynamics with probabilistic uncertainty through the proposed Quantum-Entropy 

NARX (Q-ENARX) model. The methodology combines nonlinear autoregressive modeling, 

entropy-based trust-region optimization, and quantum information theory to establish a unified 

formulation for dynamic forecasting. The model embeds NARX states into a quantum Hilbert 

space, introduces an entropy-regularized loss function to balance accuracy and uncertainty, and 

employs a quantum Fisher Information Matrix for curvature-aware optimization. Analytical 

derivations reveal that Q-ENARX achieves enhanced stability, improved generalization, and 

robust convergence by leveraging quantum state dynamics, entropy-energy duality, and fractional 

learning operators. The results shows that the integration of entropy and quantum principles 

transforms traditional NARX forecasting into a probabilistically interpretable and physically 

grounded framework capable of capturing complex temporal correlations with high mathematical 

precision. 
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1. INTRODUCTION  

The development of forecasting models has evolved from linear regression systems to highly nonlinear neural architectures 

capable of modeling temporal dependencies [1]-[3]. However, as data complexity increases toward high-dimensional and non-

stationary structures, traditional statistical models become inadequate [4], [5]. In recent years, the integration of quantum 

mechanics and information theory into neural systems has opened new possibilities for representing uncertainty, superposition, 

and probabilistic learning in mathematical form. [6]-[8]. These principles allow model parameters to behave as quantum 

amplitudes, preserving phase and magnitude information simultaneously. Such representations offer a richer structure for 

capturing hidden correlations within complex data streams.  

Classical nonlinear autoregressive models, including the widely used NARX architecture, rely on deterministic mappings 

between historical observations and exogenous variables [9]. While powerful, these mappings struggle to maintain stability and 

generalization when the number of inputs exceeds millions of dimensions. In large-scale applications, overfitting and chaotic 

gradient oscillations often emerge due to the absence of probabilistic control mechanisms within the learning space [10]. 

Moreover, gradient-based optimization under Euclidean geometry cannot accurately describe systems with curvature or 

entangled parameter manifolds. These challenges limit the scalability of conventional NARX models in big data environments 

where noise, uncertainty, and dynamic interdependencies dominate. Hence, a new mathematical approach is needed that accounts 

for both deterministic dynamics and stochastic entropy properties in learning equations. 

Quantum information theory provides a mathematical foundation for describing systems governed by uncertainty, entropy, 

and information balance [11]-[13]. Its formulation in Hilbert space enables data to be represented as wave functions, where 

probability amplitudes evolve under linear and unitary transformations [14]. Unlike classical statistics that rely on real-valued 

probability distributions, quantum probability can encode correlations that are both local and global through superposition and 

entanglement. When applied to neural forecasting, this structure allows each neuron or state variable to represent not just a single 

value but a distribution of potential outcomes with corresponding probabilities. Entropy, in the quantum and information theory, 
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measures the uncertainty or information content embedded in a system’s state [15]. Within neural computation, entropy 

regularization serves to prevent overconfidence in predictions by penalizing excessively concentrated probability distributions 

[16].  By maintaining an appropriate level of entropy during learning, the model avoids degenerate solutions and ensures 

smoother convergence toward global minima. The incorporation of entropy within the cost function transforms the optimization 

landscape from rigid deterministic descent to an adaptive probabilistic equilibrium [17]. In mathematical terms, entropy acts as 

a control parameter that balances prediction accuracy against representational uncertainty.  

This paper introduces the Quantum-Entropy NARX (Q-ENARX) model as a purely mathematical framework for dynamic 

forecasting, constructed from the convergence of quantum information theory, entropy regularization, and nonlinear 

autoregressive principles. The objective is to derive a consistent set of equations governing quantum state transitions, entropy-

regulated loss functions, fractional dynamic operators, and Lyapunov-based stability conditions. The study does not rely on 

empirical simulations but instead focuses on the analytical derivation of learning laws, convergence proofs, and information-

theoretic interpretations. 

 

2. RESEARCH METHOD  

This study employs a mathematical synthesis of three foundational frameworks nonlinear autoregressive modeling, 

entropy-based trust-region optimization, and quantum information theory to construct the proposed Quantum-Entropy NARX 

(Q-ENARX) model. The NARX formulation from [18] provides the nonlinear dynamic mapping capable of representing 

complex temporal dependencies through recursive autoregressive and exogenous input structures, as well as the generalized 

frequency response (GFRF) formulation for higher-order system representation. To ensure numerical stability and regulate 

learning in high-dimensional parameter spaces, the entropy-regularized optimization principle from [19] is incorporated, 

introducing a trust-region natural-gradient approach that balances exploration and exploitation within the model’s learning 

dynamics. Furthermore, the quantum information entropy and statistical dynamics framework from [20] establishes the 

foundation for embedding NARX states into a Hilbert space. 

 

2.1  Basic NARX Formulation 

The nonlinear autoregressive model with exogenous inputs (NARX) describes dynamic systems as: 

 

𝑦𝑡 = 𝐹(𝑦𝑡−1, 𝑦𝑡−2, … , 𝑦𝑡−𝑝, 𝑥𝑡 , 𝑥𝑡−1, … , 𝑥𝑡−𝑞) + 𝜀𝑡  (1) 

 

where 𝑦𝑡 is the system output, 𝑥𝑡 the external input, and 𝜀𝑡 a white-noise residual. For a polynomial approximation of 

order 𝑛: 

 

𝐹(x𝑡) = ∑ ∑ 𝑎𝑖𝑗
𝑟
𝑗=0

𝑛
𝑖=1 𝑦𝑡−𝑖

𝑗
+ ∑ 𝑏𝑖𝑘

𝑠
𝑘=0 𝑥𝑡−𝑘

𝑗
  (2) 

 

2.2  Quantum Probability Embedding 

To extend this into the quantum probabilistic domain, we embed the NARX state vector x𝑡 into a Hilbert space ℋ: 

 

|𝜓𝑡⟩ = ∑ 𝑐𝑖𝑖 |𝑥𝑖⟩, ∑ |𝑖 𝑐𝑖|
2 = 1  (3) 

The system evolution follows a unitary transformation governed by: 

 

|𝜓𝑡+1⟩ = 𝑈(𝜃)|𝜓𝑡⟩  (4) 

 

where 𝑈(𝜃) = 𝑒−𝑖𝐻(𝜃)Δ𝑡 is the quantum evolution operator parameterized by the system Hamiltonian 𝐻(𝜃). 
 

2.3  Entropy Regularization Term 

The quantum-entropy constraint is applied to preserve uncertainty balance: 

 

ℋ(𝜓𝑡) = −Tr(𝜌𝑡log𝜌𝑡)  (5) 

 

with the density operator 𝜌𝑡 = |𝜓𝑡⟩⟨𝜓𝑡|.  
To prevent over-collapse of probability distributions, the entropy-regularized loss becomes: 

 

ℒ =
1

𝑁
∑ (𝑡 𝑦𝑡 − 𝑦̂𝑡)

2 − 𝜆ℋ(𝜓𝑡)  (6) 

 

where 𝜆 > 0 controls the trade-off between fitting accuracy and information diversity. 
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2.4  Quantum Fisher Information and Gradient Update 

The model parameters evolve following a quantum-natural gradient derived from the Fisher Information Matrix (FIM): 

 

ℱ𝑖𝑗 = ℜ(⟨∂𝑖𝜓𝑡| ∂𝑗𝜓𝑡⟩ − ⟨∂𝑖𝜓𝑡|𝜓𝑡⟩⟨𝜓𝑡| ∂𝑗𝜓𝑡⟩)  (7) 

 

Parameter updates use the Fisher-preconditioned gradient: 

 

𝜃𝑘+1 = 𝜃𝑘 − 𝜂ℱ−1∇𝜃ℒ(𝜃𝑘)  (8) 

 

2.5  Generalized Frequency Response Function (Quantum GFRF) 

The quantum generalized frequency response of order 𝑚 is defined as: 

 

𝐻𝑄
(𝑚)

(𝜔1, … , 𝜔𝑚) = ∫ ⋯∫ ℎ𝑄
(𝑚)

(𝜏1, … , 𝜏𝑚)𝑒
−𝑖(𝜔1𝜏1+⋯+𝜔𝑚𝜏𝑚)𝑑𝜏1⋯𝑑𝜏𝑚 (9) 

 

where ℎ𝑄
(𝑚)

 are quantum Volterra kernels encoding the nonlinear and entangled temporal dynamics. 

 

2.6  Quantum Regularized Forecasting Equation 

Combining all components, the full Q-ENARX evolution is expressed as: 

 

𝑦𝑡 = ℜ[⟨𝜓𝑡|𝑂̂|𝜓𝑡⟩] + 𝜀𝑡 ,

𝑂̂ = ∑ 𝜃𝑖𝑖 𝐴̂𝑖 ,

ℒ(𝜃) =
1

𝑁
∑ (𝑡 𝑦𝑡 − 𝑦̂𝑡)

2 − 𝜆 Tr(𝜌𝑡log𝜌𝑡),

𝜃𝑘+1 = 𝜃𝑘 − 𝜂 ℱ−1∇𝜃ℒ(𝜃𝑘)

  (10) 

 

3. RESULTS AND DISCUSSION  

The proposed Quantum-Entropy NARX (Q-ENARX) model represents a synthesis between nonlinear autoregressive 

networks and quantum information theory. Unlike conventional NARX, which operates in a deterministic signal domain, Q-

ENARX generalizes the system’s state into a probabilistic Hilbert space, where each activation corresponds to a quantum 

probability amplitude. 

 

3.1  Quantum State Dynamics and Temporal Encoding 

The NARX input-output relation is projected onto a quantum state vector: 

 

|𝜓𝑡⟩ = ∑ 𝑐𝑖𝑖 (𝑡)|𝑥𝑖⟩, ∑ |𝑖 𝑐𝑖(𝑡)|
2 = 1  (11) 

 

The evolution of the hidden dynamics is governed by a unitary operator: 

 

|𝜓𝑡+1⟩ = 𝑈(𝜃𝑡)|𝜓𝑡⟩ = 𝑒−𝑖𝐻(𝜃𝑡)Δ𝑡|𝜓𝑡⟩  (12) 

 

where 𝐻(𝜃𝑡) denotes the Hamiltonian representing nonlinear system energy.  

 

3.2  Quantum-Expected Output 

The observable output of the model corresponds to the expected value of an operator 𝑂̂: 

 

𝑦̂𝑡 = ⟨𝜓𝑡|𝑂̂|𝜓𝑡⟩  (13) 

 

Substituting (2) into (3) yields the quantum autoregressive recurrence: 

 

𝑦̂𝑡+1 = ⟨𝜓𝑡|𝑈
†(𝜃𝑡)𝑂̂𝑈(𝜃𝑡)|𝜓𝑡⟩ (14) 

 

which generalizes the classical nonlinear map to a Hermitian expectation framework. 
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3.3  Entropy of Quantum States 

System uncertainty is measured by von Neumann entropy: 

 

𝑆(𝜌𝑡) = −Tr(𝜌𝑡log𝜌𝑡) (15) 

 

where 𝜌𝑡 = |𝜓𝑡⟩⟨𝜓𝑡| is the state’s density operator. Entropy quantifies the degree of superposition spread, analogous to 

stochastic regularization in conventional networks. 

 

3.4  Quantum-Entropy Regularized Loss 

The training objective couples mean-squared deviation with entropy control: 

 

ℒ(𝜃) =
1

𝑁
∑ (𝑡 𝑦𝑡 − 𝑦̂𝑡)

2 − 𝜆𝑆(𝜌𝑡)  (16) 

 

Parameter 𝜆 > 0 adjusts the trade-off between prediction precision and information diversity. Differentiating (6) gives the 

quantum-regularized gradient: 

 

∇𝜃ℒ = −
2

𝑁
∑ (𝑡 𝑦𝑡 − 𝑦̂𝑡)∇𝜃𝑦̂𝑡 − 𝜆∇𝜃𝑆(𝜌𝑡)  (17) 

 

3.5  Gradient of the Entropy Term 

Using matrix differential calculus, the entropy gradient becomes: 

 

∇𝜃𝑆(𝜌𝑡) = −(∇𝜃𝜌𝑡)(log𝜌𝑡 + 𝐼)  (18) 

 

and the quantum state derivative follows from: 

 

∇𝜃𝜌𝑡 = (∇𝜃|𝜓𝑡⟩)⟨𝜓𝑡| + |𝜓𝑡⟩(∇𝜃⟨𝜓𝑡|)  (19) 

 

Equations (8)–(9) describe how parameter perturbations modify the informational entropy landscape of the system. 

 

3.6  Quantum Fisher Information and Natural Gradient 

The Fisher Information Matrix (FIM) defines the intrinsic curvature of the quantum manifold: 

 

ℱ𝑖𝑗 = 4 ℜ[⟨∂𝑖𝜓𝑡| ∂𝑗𝜓𝑡⟩ − ⟨∂𝑖𝜓𝑡|𝜓𝑡⟩⟨𝜓𝑡| ∂𝑗𝜓𝑡⟩]  (20) 

 

Parameter updates follow the quantum-natural gradient: 

 

𝜃𝑘+1 = 𝜃𝑘 − 𝜂 ℱ−1∇𝜃ℒ(𝜃𝑘) (21) 

 

3.7  Quantum Information Bottleneck 

Analogous to the classical Information Bottleneck, Q-ENARX minimizes redundancy via: 

 

𝒥𝐼𝐵 = 𝐼(𝑋; 𝑇) − 𝛽𝐼(𝑇; 𝑌)  (22) 

 

where 𝐼(⋅;⋅) denotes quantum mutual information: 

 

𝐼(𝐴; 𝐵) = 𝑆(𝐴) + 𝑆(𝐵) − 𝑆(𝐴𝐵) 
 (23) 

 

Minimization of (12) constrains the latent representation 𝑇 to encode only the most predictive aspects of input 𝑋. 

 

3.8 Fractional Quantum Dynamics 

To capture long-memory nonlinearities, we incorporate fractional derivatives: 

 

𝐷𝑡
𝛼𝜓𝑡 = −𝑖𝐻(𝜃𝑡)𝜓𝑡, 0 < 𝛼 ≤ 1  (24) 
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which in integral form becomes: 

 

𝜓𝑡 = 𝜓0 +
1

Γ(𝛼)
∫ (
𝑡

0
𝑡 − 𝜏)𝛼−1(−𝑖𝐻(𝜃𝜏)𝜓𝜏) 𝑑𝜏 (25) 

 

Fractional order 𝛼 controls temporal persistence; smaller values produce smoother long-range dependencies. 

 

3.9  Quantum Regularization Energy Functional 

The total system energy can be represented as: 

 

𝐸(𝜃) =
1

2
|𝑦 − 𝑦̂|2 − 𝜆𝑆(𝜌𝑡)  (26) 

 

The energy descent law follows: 

 
𝑑𝐸

𝑑𝑡
= −|∇𝜃ℒ|

2 ≤ 0  (27) 

 

3.10  Lyapunov Stability Condition 

For stability, a Lyapunov candidate 𝑉(𝑒𝑡) =
1

2
𝑒𝑡
𝑇𝑒𝑡 satisfies: 

 

Δ𝑉 = 𝑉(𝑒𝑡+1) − 𝑉(𝑒𝑡) = 𝑒𝑡
𝑇(𝐽𝑓 − 𝐼)𝑒𝑡 < 0  (28) 

where 𝐽𝑓 = ∂𝑓𝜃/ ∂𝑦𝑡 is the Jacobian. Quantum perturbations modify this as: 

 

𝐽𝑓
(𝑄)

= 𝐽𝑓 + 𝜆  ∂2𝑆(𝜌𝑡)/ ∂𝑦𝑡
2 (29) 

 

bounded eigenvalues |𝜆𝑖(𝐽𝑓
(𝑄)
)| < 1. 

 

3.11  Entropy-Energy Duality 

Thermodynamic equilibrium implies: 

 
∂𝑆

∂𝐸
=

1

𝑇
  (30) 

 

and in learning dynamics: 

 
𝑑𝑆

𝑑𝑡
=

1

𝑇

𝑑𝐸

𝑑𝑡
 (31) 

 

showing that entropy growth corresponds to energy dissipation through training iterations. 

 

3.12 Quantum Potential Function 

Introducing an effective potential: 

 

𝑉𝑄(𝜓𝑡) = −
ℏ2

2𝑚

∇2|𝜓𝑡|

|𝜓𝑡|
  (32) 

 

the modified forecasting equation reads: 

 

𝑖ℏ
𝑑𝜓𝑡

𝑑𝑡
= 𝐻(𝜃𝑡)𝜓𝑡 + 𝑉𝑄(𝜓𝑡)𝜓𝑡 (33) 

 

which parallels the nonlinear Schrödinger equation used for dynamic prediction with uncertainty coupling. 

 

3.13  Quantum Kullback–Leibler Divergence 

Regularization can also be expressed via quantum relative entropy: 

 

𝐷𝐾𝐿(𝜌1||𝜌2) = Tr[𝜌1(log𝜌1 − log𝜌2)]  (34) 
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and incorporated as an alternative penalty term in the loss: 
 

ℒ𝐾𝐿 = ℒ𝑀𝑆𝐸 + 𝜆𝐷𝐾𝐿(𝜌𝑡||𝜌0) (35) 
 

where 𝜌0 is a uniform reference density. 
 

3.14  Generalization Bound 

Following information-theoretic limits, the expected generalization error satisfies: 
 

𝔼[𝐿𝑡𝑒𝑠𝑡] − 𝔼[𝐿𝑡𝑟𝑎𝑖𝑛] ≤ 𝑂(√
𝑆(𝜌𝑡)

𝑁
) 

 (36) 
 

showing that higher entropy yields stronger generalization guarantees. 
 

3.15  Quantum Spectral Representation 

Temporal dynamics can be analyzed via the quantum spectral transform: 
 

Ψ(𝜔) = ∫ 𝜓𝑡
∞

−∞
𝑒−𝑖𝜔𝑡𝑑𝑡 (37) 

 

and the frequency-domain response: 
 

𝐻𝑄(𝜔) =
Ψ𝑜𝑢𝑡(𝜔)

Ψ𝑖𝑛(𝜔)
 (38) 

 

3.16  Fractional Convergence Rate 

The convergence rate under fractional updates satisfies: 
 

𝑟(𝛼) =
𝜂𝛼

Γ(1+𝛼)
𝐿−𝛼 (39) 

 

implying sub-linear yet more stable adaptation compared with integer-order descent. 
 

3.17  Quantum Entropy Decay Law 

The temporal evolution of entropy follows: 
 

𝐷𝑡
𝛼𝑆(𝜌𝑡) = −𝜅(𝑆(𝜌𝑡) − 𝑆∗) (40) 

 

with solution: 

𝑆(𝜌𝑡) = 𝑆∗ + (𝑆0 − 𝑆∗)𝐸𝛼(−𝜅𝑡
𝛼)  (41) 

 

where 𝐸𝛼(⋅) is the Mittag–Leffler function, signifying non-exponential relaxation toward equilibrium. 
 

3.18  Quantum Variance Reduction 

Variance of the predicted output decreases exponentially with entropy strength: 
 

Var[𝑦̂𝑡] ∝ 𝑒−𝜆𝑆(𝜌𝑡) (42) 
 

thus entropy acts as a dynamic variance suppressor improving robustness. 
 

3.19  Unified Quantum Forecasting Operator 

Combining all principles yields the compact expression: 

 

𝑦̂𝑡 = ℜ[⟨𝜓𝑡|𝑂̂|𝜓𝑡⟩],
𝑑|𝜓𝑡⟩

𝑑𝑡
= −𝑖𝐻(𝜃𝑡)|𝜓𝑡⟩,

ℒ =
1

𝑁
∑ (𝑡 𝑦𝑡 − 𝑦̂𝑡)

2 − 𝜆𝑆(𝜌𝑡),

𝜃𝑘+1 = 𝜃𝑘 − 𝜂ℱ−1∇𝜃ℒ

 (43) 

Equation (33) encapsulates the Quantum-Entropy NARX dynamics within a unified variational framework. 
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4. CONCLUSION  

The Quantum-Entropy NARX (Q-ENARX) model successfully integrates nonlinear autoregressive dynamics, entropy 

regularization, and quantum information theory into a unified predictive framework. By projecting the NARX structure onto a 

probabilistic Hilbert space, the model captures both amplitude and phase information of dynamic signals. The incorporation of 

von Neumann entropy and Fisher Information ensures stability and generalization through the regulation of uncertainty and 

curvature-aware optimization. Moreover, the inclusion of fractional derivatives enhances long-term memory representation, 

while entropy-energy duality establishes a thermodynamic interpretation of learning convergence. Theoretical formulations, 

from the Lyapunov condition to the quantum Kullback–Leibler divergence, collectively demonstrate that Q-ENARX achieves 

robust learning behavior, reduced variance, and improved adaptability to non-stationary environments. 
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